
Databases
TDA357/DIT622 (4.5 hec)

Responsible: Ana Bove, tel: 1020

Thursday 28th of August 2025, 14:00–18:00

Total: 60 points
TDA357/DIT622: > 27: 3, > 38: 4, > 49: 5

Make sure your handwriting and drawings are readable!
What we cannot read we cannot correct!

The exam has 6 questions. Make sure to turn pages! :)

Note: As said in the course page, if you brought one hand written double sided A4
of notes to the exam, you must hand it in along with your solutions.

Good luck!

1 SQL and Constraints (8.5 pts)

Here we work in the domain of artists and concerts efter the following (incomplete) rela-
tional schema:

Artists (name, contact, price, type)
ConcertHalls (name, address, nrseats)
Concerts (date, artist, arena, address, price)

artist → Artists.name
(arena, address) → ConcertHalls.(name, address)

Artists are identified by their name, have some contact information and a price they
charge per concert. An artist can be a solo artist or a band; this is the type of the artist.

Different concert halls could have the same name, hence their addresses are also needed
for their identification. Each concert hall has a certain number of seats which indicates the
maximum number of tickets that can be sold for a concert in that particular concert hall.

A concert is given by a particular artist in a particular concert hall at a particular
date. All tickets for that particular concert have the same price. An artist can only give
a concert per day and a concert hall can only have a concert per day.

a) Without giving the complete tables:

i) (1pt) Give the corresponding SQL definition for the attribute (sometimes also called
column) type in Artists and nrseats in ConcertHalls.

ii) (1.5pts) Give a primary key for Concerts and any secondary keys that may be
needed.

iii) (1pt) Explain how to best modify the schema (by adding attributes, constraints
or tables) in order to keep track of the number of tickets that have been sold for

1

a particular concert. (Seats are not numbered so it is enough to know the total
number of sold tickets.)

iv) (1pt) Given your solution to the previous question, explain how to avoid selling
more tickets that the available number of seats in the arena of the concert.

v) (1pt) Explain how to guarantee that a solo artist cannot charge more than 1M sek
and that a band cannot charge more than 1.5M sek for a concert.

b) (3pts) Write an SQL query that list all the past concerts that were not profitable. A
concert is profitable if the income from the sold tickets is higher than the price the artist
charges for the concert. The output should contain the date of each concert, its artist
and the lost in money. The SQL expression CURRENT_DATE gives today’s date.

Solution:

CREATE TABLE Artists (

name TEXT PRIMARY KEY,

contact TEXT NOT NULL,

price INT NOT NULL CHECK (price >= 0),

type TEXT NOT NULL CHECK (type IN (’solo’,’band’)),

CONSTRAINT right_price CHECK ((type = ’solo’ AND price <= 1000000) OR

(type = ’band’ AND price <= 1500000)));

CREATE TABLE ConcertHalls (

name TEXT,

address TEXT,

nrseats INT NOT NULL CHECK (nrseats > 0),

PRIMARY KEY (name, address));

CREATE TABLE Concerts (

date DATE,

artist TEXT REFERENCES Artists,

arena TEXT NOT NULL,

address TEXT NOT NULL,

tcktprice INT NOT NULL CHECK (tcktprice >= 0),

nrsold INT NOT NULL CHECK (nrsold >= 0),

PRIMARY KEY (date, artist),

UNIQUE (date, arena, address),

FOREIGN KEY (arena, address) REFERENCES ConcertHalls);

a) i-iii) See the tables.
iv) To guarantee that no more tickets than places in a particular concert hall are sold
one could use a trigger that checks whether the number of sold tickets do not yet exceed
the number of seats in the concert hall.
An alternative is adding the number of seats in Concerts with a reference to ConcertHalls

2

and then add a constraint that the number of sold tickets should be at most the number
of seats.
v) The constraint right price is the answer to the last question.

b) SELECT date, artist, tcktprice*nrsold - price AS income

FROM Concerts JOIN Artists ON name = artist

WHERE date < CURRENT_DATE AND (tcktprice*nrsold - price) < 0;

Using income instead of tcktprice*nrsold - price in the WHERE clause does not
work. Recall the SELECT part is perform at the end of the query.

2 SQL and RA (12 pts)

We continue with the same domain as in question 1 on SQL with the constraints, keys and
additional information you defined previously:

Artists (name, contact, price, type)
ConcertHalls (name, address, nrseats)
Concerts (date, artist, arena, address, price)

artist → Artists.name
(arena, address) → ConcertHalls.(name, address)

a) (3+3pts) Write an SQL query and a relational algebra expression that outputs the
percentage of sold tickets for each of the concerts in the table. The output should
contain the date of the concert, the artist and the percentage of sold tickets for that
particular concert. Order the output in descending order after the percentage.

b) (3+3pts) Write an SQL query and a relational algebra expression that for every concert
hall outputs the number of concerts with “exclusive” artists that had concerts in the
particular hall. A solo artist is considered exclusive if its price is higher than 0.5Msek,
and a band is considered exclusive if its price is higher than 0.75Msek. The output
should consist of the full identification of the concert halls and the number of concerts
with exclusive artists that took place in each of the concert halls. Use CURRENT_DATE

for today’s date even in relation algebra.

Solution:

a) SELECT date, artist, nrsold*100/nrseats AS percentage

FROM Concerts JOIN ConcertHalls

ON name = arena AND Concerts.address = ConcertHalls.address

ORDER BY percentage DESC;

3

An alternative way of presenting the percentage could be something like
ROUND (nrsold::numeric/nrseats, 2). Presumably both nrsold and nrseats are
defined as INT and simply nrsold/nrseats will be the integer division and hence give
just 0 or 1 (if all tickets were sold).

RA:
With R = Concerts ./name=arena∧Concerts.address=ConcertHalls.address ConcertHalls)
the RA is τ−percentage(πdate,artist,nrsold∗100/nrseats→percentage R)

b) SELECT arena, address, COUNT(*) AS nr

FROM (SELECT * FROM Concerts WHERE date < CURRENT_DATE) AS C,

(SELECT * FROM Artists

WHERE (type = ’solo’ AND price > 500000) OR

(type = ’band’ AND price > 750000)) AS A

WHERE C.artist = A.name

GROUP BY arena, address;

γarena,address,COUNT(∗)→nr(σdate<CURRENT DATEConcerts ./artist=name

σ(type=′solo′∧price>0.5M)∨(type=′band′∧price>0.75M)Artists)

3 Views and Triggers (13.5 pts)

We continue with the same domain as in question 1 on SQL with the constraints, keys and
additional information you defined previously:

Artists (name, contact, price, type)
ConcertHalls (name, address, nrseats)
Concerts (date, artist, arena, address, price)

artist → Artists.name
(arena, address) → ConcertHalls.(name, address)

Propose a solution (meaning, the corresponding full SQL code) to the following tasks
that need to be performed:

a) (4pts) Keep track of the artists and their type with the highest number of concerts this
year when considering all concert halls.

The output should just consist of the name of the artists and their type. If there are
more than one artist with the same highest number of concerts, all these artists and
their type should be part of the answer.

The SQL expression date_part(’year’,date) gives the year part of date. Recall the
expression CURRENT_DATE.

4

b) (4.5pts) Keep track of how many concerts with solo artists and with bands take place
on each concert hall. All the concerts recorded in the table should be counted.

The output should contain four columns: two for the full identification of the concert
hall and two columns for the number of solo concerts and the number of band concerts,
respectively, in that particular concert hall.

c) (5pts) It takes time to transport everything from one concert hall to another.
Make sure an artist does not have a concert two days in a row unless it is in the same
concert hall.

Given a particular date, the expressions date+1 and date-1 give the dates for the
following and the previous days.

Solution:

a) CREATE OR REPLACE VIEW ArtistMaxConcerts AS

WITH NrConcerts AS

(SELECT artist, COUNT(*) AS nr

FROM Concerts

WHERE date_part(’year’,date) = date_part(’year’,CURRENT_DATE)

GROUP BY artist)

SELECT artist, type

FROM NrConcerts JOIN Artists ON name = artist

WHERE nr = (SELECT MAX(nr) FROM NrConcerts);

b) CREATE OR REPLACE VIEW ConcertsPerArena AS

WITH

ConcertsPerType AS

(SELECT arena, address, type, COUNT(*) AS nr

FROM Concerts JOIN Artists ON artist = Artists.name

GROUP BY arena, address, type),

CPTS AS (SELECT arena, address, nr AS nrsolo

FROM ConcertsPerType WHERE type = ’solo’),

CPTB AS (SELECT arena, address, nr AS nrband

FROM ConcertsPerType WHERE type = ’band’)

SELECT arena, address,

COALESCE(nrsolo,0) AS nrsolo, COALESCE(nrband,0) AS nrband

FROM CPTS FULL OUTER JOIN CPTB USING (arena,address);

-- alternative: FROM CPTS NATURAL FULL OUTER JOIN CPTB;

5

c) CREATE OR REPLACE FUNCTION book_concert() RETURNS TRIGGER AS $$

BEGIN

IF EXISTS (SELECT * FROM Concerts

WHERE artist = NEW.artist AND

(date = NEW.date + 1 OR date = NEW.date -1) AND

(arena != NEW.arena OR address != NEW.address))

THEN RAISE EXCEPTION ’Not enough time between concerts in different halls’;

END IF;

RETURN NEW;

END;

$$ LANGUAGE plpgsql;

CREATE OR REPLACE TRIGGER BookConcert

BEFORE INSERT ON Concerts

FOR EACH ROW

EXECUTE FUNCTION book_concert();

Defining the trigger AFTER INSERT would also have worked.

4 ER Modelling (10 pts)

a) (6pts) Your task is to make an ER-diagram for the employee database of your friendly
neighborhood mega-corporation. Their HR department sent you this list of demands:

• Each employee has a unique corporate ID number, a name, and belongs to a
department of the corporation. Most of the employees are unpaid interns, those
who aren’t have a salary in addition to their other attributes.

• Some of the paid employees are mentors. Mentors have a salary bonus (negotiated
individually for each mentor). Every Mentor is responsible for mentoring another
specific employee (the mentored employee could be paid or unpaid).

• Occasionally, paid employees get suspended without pay. For every such trouble-
some case, there is a date on which the suspension was issued and the number
of days the employee was suspended. An employee can be suspended multiple
times (but never more than once on the same day). The full history of suspensions
should be recorded in the database.

Note: Only dates that have a suspension should appear in the database/included
in the tables. Suspension periods might overlap.

• Every department of the corporation has a name and an address.

The HR department also sent along this hint: Consider how to model unpaid/paid/mentoring
employees. What’s the most special/most general case? Make sure there is no fourth
kind of employee.

b) (4pts) Translate your diagram into a relational schema.

6

Solution:

a)

b)

Departments (name, address)
Employees (id, name, dep)

dep → Departments.name
Paids (id, salary)

id → Employees.id
Mentors (id, bonus, emp)

id → Paids.id
emp → Employees.id

Suspensions (id, date, duration)
id → Paids.id

5 Functional and Multivalued Dependencies (8.5pts)

Consider the relation Exams(course, student, score, number, text, date) contain-
ing information about exams at a university.

The attributes are to be understood as follows:
course is the course code the exam is for;
student is the id of a student;
score is the total score a student got on the exam;
number is the number of an exam question;

7

text is the text of an exam question;
date is the date of the exam.

A row like (TDA357, Emilia, 40, 5, ’Consider the relation...’, 2025-08-25)

means Emilia got 40 points on the August exam of the TDA357 course, and also that
question five on the August exam had the specified question text ’Consider the relation...’.

Note 1: The relation contains all students and their scores, and all questions of all
exams ever (many exams for each course).

Note 2: The score on individual questions is not kept in the database, just the total
score of every student on each exam.

a) (2.5pts) Show using a counterexample why student course� date is not a valid MVD
for Exams. Explain! (for full points the explanation should not leave gaps to fill in)

b) (2pts) Give a correct MVD for Exams that is not a functional dependency. (No moti-
vation is needed.)

c) (3pts) State two functional dependencies for Exams, and normalise it to BCNF, marking
primary keys. You do not need to show your steps, just the FDs and the final schema
with the primary keys.

d) (1pt) We will not ask you to normalise the schema from c) to 4NF using the MVD from
b). Why do you think that is?

Solution:

a) Here is an example with a student that has taken two exams for the same course and
gotten different scores in those exams (? can be anything, it could also have different
question texts):
(C,S,10,?,?,D1)
(C,S,20,?,?,D2)
For course� date to be a MVD the following tuples need to also be in the table:
(C,S,10,?,?,D2)
(C,S,20,?,?,D1)
but that would mean that the student has 2 different total scores in the exam of a
course for a particular date and that will not be correct.

b) One of those:
course date � student score
course date � number text

c) course, date, student → score
course, date, number → text

Schema:
R1(course, date, student, score)
R2(course, date, number, text)
R3(course, date, student, number)

8

d) The schema is already in 4NF.

6 JSON (7.5 pts)

Consider this JSON schema for representing messages posts in an online message board.
Each post has a header and a text content. Every post is either a top level post, or a reply
to another post:

{

"type": "array",

"items": [

{

"title": "post",

"type": "object",

"properties": {

"header": {"type": "string"},

"txt": {"type": "string"},

"replies": {"$ref":"#", "minItems":1},

},

"additionalProperties": false,

"required": ["header","txt"]

}

]

}

a) (3pts) Translate this relational data (five posts) into the given format. Your answer
should be a JSON document that validates against the schema above. In arrays, posts
should be ordered by increasing id values in the table.

Posts(id, header, txt, replyTo (or null))
replyTo → Posts.id

(id, header, txt, replyTo)
(0, h1, x1, null)
(1, h2, x2, 0)
(3, h3, x3, 1)
(4, h4, x4, 0)
(5, h5, x5, null)

b) (2pts) Write a JSON path for finding the text of the first reply to the top level post
with the header “h1”. In the test data above, the result would be “x2”. Note that the
path should work for any valid document, not just this particular one.

c) (2.5pts) Write a JSON path for finding the headers of all posts that are replies. In the
test data above, it would give three strings: [h2, h3, h4]

9

Solution:

a) [{"header":"h1", "txt":"x1", "replies":[

{"header":"h2", "txt":"x2", "replies":[

{"header":"h3", "txt":"x3"}]},

{"header":"h4", "txt":"x4"}]},

{"header":"h5", "txt":"x5"}

]

b) $[*]?(header=="h1").replies[0].txt

c) $[*].replies.**.header

10

