
Databases
TDA357/DIT622/DIT621 (4.5 hec)

Responsible: Ana Bove, tel: 1020

Friday 21st of March 2025, 8:30–12:30

Total: 60 points
TDA357/DIT622: > 27: 3, > 38: 4, > 49: 5

DIT621: > 27: G, > 45: VG

Make sure your handwriting and drawings are readable!
What we cannot read we cannot correct!

The exam has 6 questions. Make sure to turn pages! :)

Note: As said in the course page, if you brought one hand written double sided A4
of notes to the exam, you must hand it in along with your solutions.

Good luck!

Note: The exm turned out to be 60.5 pts in total since part 2 is 12 points and not 11.5.
The amount of points needed for each grade will be the same as stated above.

1 SQL and Constraints (7.5 pts)

Here we work in the domain of users, channels and messages efter the following (incomplete)
relational schema:

Users (id, nickname, role)
Channels (name, status)
Messages (nr, sender, channel, content, reply)

sender → Users.id
channel → Channels.name

Users have an id number which identifies them, a nickname and a role which at the
moment can only be of two kinds: admin or student (but in the future one might allow
more possible roles).

Channels have a unique name and a status flag indicating whether the channel is open
or not. Students can only send messages to open channels, admin users can send messages
to all channels.

Each message has a unique identifying number, is send by a user in an specific channel,
and has a text content. Some messages are a reply to some other message, in which case
reply will contain the identification number of the message that is being replied to.

a) (1.5pts) Without giving the complete tables, give the corresponding SQL definitions
for the attributes (sometimes also called columns) roles, status and reply in the tables
which will result from the schema above.

1

b) (1.5pts) Does the current schema guarantee that deleting a message will also delete all
its replies?

If yes, explain why. If not, explain how this could be guaranteed using SQL (no need
for a full implementation).

c) (2pts) Does the current schema guarantee that a reply is sent to the same channel as
the message that is being replied to?

If yes, explain why. If not, explain how this could be guaranteed using SQL (no need
for a full implementation).

d) (2.5pts) We want to allow a user to block another user for a certain number of days.
For this purpose we add a new table, with the following (incomplete) schema, to keep
track of the blocks that are currently in place (that is, only active blocks are kept in
the table, you do not need to worry about removing expired blocks):

Blocks (blocker, blocked, start, period)

This means that the if user A (the blocker) blocks user B (the blocked) today (the start)
and for 3 days (the period), then user B cannot reply to any of the messages A sends
during the following 3 days.

Give the full SQL definition of the table Blocks.

Solution:

CREATE TABLE Users (

id INT PRIMARY KEY,

nickname TEXT NOT NULL,

role TEXT NOT NULL CHECK (role IN (’admin’,’student’)));

CREATE TABLE Channels (

name TEXT PRIMARY KEY,

open BOOLEAN NOT NULL);

CREATE TABLE Messages (

nr INT PRIMARY KEY,

sender INT NOT NULL REFERENCES Users,

channel TEXT NOT NULL REFERENCES Channels,

content TEXT NOT NULL,

reply INT REFERENCES Messages);

a) See the definition of the attributes in the tables above.
It is enough to simply give the corresponding lines.
Important information is the type of the attribute, whether it can be empty or not, and
any additional constraint.

I used the boolean type for status so I called this attribute open instead. Another
possibility would be to give the following definition for status:

status TEXT NOT NULL CHECK (status IN (’open’, ’close’))

2

b) No, reply would need to be defined as
reply INT REFERENCES Messages ON DELETE CASCADE

c) No, the is nothing in the defintion of the tables guaranteeing this.

A foreign key reference
FOREIGN KEY (reply, channel) REFERENCES Messages.(nr, channel)

in Messages will do this.

Recall that FOREIGN KEY need to refer to UNIQUE values so we will need to even add a
UNIQUE (channel, reply) constraint.

Observe that just a UNIQUE (channel, reply) constraint will only guarantee that all
replies of a message are in the same channel, but this channel might not be the same
channel as the one the original message was sent to!

d) CREATE TABLE Blocks (

blocker INT REFERENCES Users,

blocked INT REFERENCES Users,

start DATE NOT NULL DEFAULT CURRENT_DATE,

period INT NOT NULL CHECK (period > 0),

PRIMARY KEY (blocker, blocked));

No need for the part DEFAULT CURRENT_DATE but the check for period needs to be
there.

2 SQL and RA (12 pts)

We continue with the same domain as in question 1 on SQL with the constraints you de-
fined previously:

Users (id, nickname, role)
Channels (name, status)
Messages (nr, sender, channel, content, reply)

sender → Users.id
channel → Channels.name

Blocks (blocker, blocked, start, period)

a) (2.5+3pts) Write an SQL query and a relational algebra expression that output the list
of users’ nicknames and the number of messages (including replies) each of the users
has sent. The output has to be ordered in decreasing order with respect to the numbers
of sent messages.

b) (3pts) Write a relational algebra expression that for every user in the domain, outputs
the id and nickname of the user together the with sum of the lengths of the contents in

3

the messages that the user has sent. To compute the length of a text t simply use the
function LENGTH(t).

c) (3.5pts) Write an SQL query that for each message, outputs the nickname of the sender.
If the message is a reply, your query should also output the nickname of the user that
sent the message the current message is replying to. Your output should then have 3
columns; order it by the message’s number.

Solution:

a) SELECT nickname, COUNT(*) AS cnt

FROM Users JOIN Messages ON id = sender

GROUP BY id, nickname

ORDER BY cnt DESC;

(recent POSTGRES version also allow just GROUP BY id).

This answer only outputs the users who HAVE sent messages. If your answer outputs
ALL users, then you need to make sure not to use COUNT(*) since this will give 1 even
for those users who have not sent messages. In this case you need to use for example
COUNT(nr), this will give 0 is no message number for that user. Same comment applies
to the corresponding RA.

RA:
τ−cnt(πnickname,cnt(γid,nickname,COUNT(∗)→cnt(Users ./id=sender Messages)))

Observe that in recent POSTGRES versions, it is ok to simply group by id and output
nickname because id is the primary key of the table with the attribute nickname.

However, in the relational algebra, if we don’t have nickname in the γ operator then we
are not able to output it since the γ operator also performs a projection.

b) Here it was emphasised thay every user should be part of the output so only an
OUTER JOIN is possible.

OK to do the COALESCE after the SUM instead.

τlen sum(γid,nickname,SUM(COALESCE(LENGTH(content),0))→len sum,(Users ./
OL
id=sender Messages))

c) WITH MsgSenders AS

(SELECT nr, nickname AS sender, reply

FROM Users JOIN Messages ON id = sender)

SELECT Msg.nr AS MsgNr, Msg.sender, Reply.sender AS replyingto

FROM MsgSenders AS Msg LEFT OUTER JOIN MsgSenders AS Reply

ON Msg.reply = Reply.nr

ORDER BY MsgNr;

4

3 Views and Triggers (10 pts)

We continue with the same domain as in question 1 on SQL with the constraints you de-
fined previously:

Users (id, nickname, role)
Channels (name, status)
Messages (nr, sender, channel, content, reply)

sender → Users.id
channel → Channels.name

Blocks (blocker, blocked, start, period)

Propose a solution (meaning, the corresponding full SQL code) to the following tasks
that need to be performed:

a) (4pts) Keep track of how much every user has blocked others and has been blocked by
others, ordered by the user id.

That is, for each user A in the domain we want to keep track of the id and nickname

of the user, the number of other users A is currently blocking, and the number of users
that are currently blocking A.

b) (6pts) As mentioned before, students can only send messages in open channels while
users with admin roles can send messages to all channels. Also, if user A is currently
blocking user B, then B cannot reply to a message that A has sent.

Make sure these restrictions are taken care of in a proper way every time a user is
sending a message in a channel.

Solution:

a) Each user should be part of the solution so an OUTER JOIN is needed.

CREATE OR REPLACE VIEW BlocksTable AS

WITH

NrBlocksPerUser AS

(SELECT id, nickname, COUNT(blocker) AS nrblocks

FROM Users LEFT OUTER JOIN Blocks ON id = blocker

GROUP BY id),

NrBlockedPerUser AS

(SELECT id, nickname, COUNT(blocked) AS nrblocked

FROM Users LEFT OUTER JOIN Blocks ON id = blocked

GROUP BY id)

SELECT id, nickname, nrblocks, nrblocked

FROM NrBlocksPerUser NATURAL JOIN NrBlockedPerUser

ORDER BY id;

5

Observe that in this solution, using COUNT(*) instead of COUNT(blocker) (COUNT(blocked))
will count the number of rows per user and for those with no blocks or not being blocked
the count will be 1 instead of 0!

b)
CREATE OR REPLACE FUNCTION send_message() RETURNS TRIGGER AS $$

DECLARE

replyto INT;

BEGIN

IF NOT (SELECT open FROM Channels WHERE name = NEW.channel)

AND (SELECT role FROM Users WHERE id = NEW.sender) = ’student’

THEN RAISE EXCEPTION ’Students cannot send messages to closed channels’;

ELSIF NEW.reply IS NOT NULL

THEN replyto = (SELECT sender FROM Messages WHERE nr = NEW.reply);

IF EXISTS (SELECT * FROM Blocks

WHERE blocker = replyto AND blocked = NEW.sender)

THEN RAISE EXCEPTION ’You are being blocked by the user you reply to’;

END IF;

END IF;

RETURN NEW;

END;

$$ LANGUAGE plpgsql;

CREATE TRIGGER SendMessage

BEFORE INSERT ON Messages

FOR EACH ROW

EXECUTE FUNCTION send_message();

Defining the trigger AFTER INSERT will be incorrect.

4 ER Modelling (10 pts)

a) (6pts) Make an ER-diagram for the following domain of books and writers. The
database should satisfy these conditions:

• Writers have a unique nickname, a name, and a year of birth.

• Some writers are also illustrators.

• Books are identified by their ISBN number. They have a title, a year of publication
and one or more writers as authors of the book.

• Some books are illustrated books. In that case, there is one illustrator that has
done all the drawings in the book. Illustrated books have also information about
the style of the drawings (for example aquarelle, oil, etc.)

6

• Books consist of chapters. Chapters have a title, but different books can have
chapters with the same name. The database also stores the number of pages each
chapter has.

• Some books may also have a preface written by a writer (though not necessarily
one of the writers of the book).

b) (4pts) Translate your diagram into a relational schema that doesn’t allow any NULL

values.

Solution:

a)

Illustrated book could instead be modelled as a many-to-at-most-one relationship to
Illustrators. The style should then be an attribute of the relationship. Even in a
solution like the one above one could think of style as an attribute to the relationship.

7

b)

Books (ISBN, title, pyear)
Chapters (ISBN, ctitle, nrpages)

ISBN → Books.ISBN
Illustrated (ISBN, nickname, style)

ISBN → Books.ISBN
nickname → Illustrators.nickname

Writers (nickname, name, byear)
Illustrators (nickname)

nickname → Writers.nickname
Authors (ISBN, nickname)

ISBN → Books.ISBN
nickname → Writers.nickname

Prefaces (ISBN, nickname)
ISBN → Books.ISBN
nickname → Writers.nickname

5 Functional and Multivalued Dependencies (11pts)

A company has a web shop with a poorly designed database that currently has two tables:
Customers (cid, email, street, city, name, category, catTag)
LogTable (cid, prodId, quantity, price, prodName)

cid → Customer.cid

The meaning of the attributes are as follows:

• cid: a customer ID (just a unique number);

• email: a customer email, used for things like logging into the web shop;

• street: part of a customer address, note that each customer can have multiple ad-
dresses;

• city: also part of a customer address;

• name: the name of a customer;

• category: a category a user has shown interest in; users may be interested in several
categories;

• catTag: this is a tag for a category (a short text); each category can have multiple
tags;

• prodId: unique identifier for a product;

• quantity: how many units of the product a user has purchased since the user became
a customer in the web shop;

8

• price: this is the current price of a product;

• prodName: the name of a product; different products can have the same name.

When using the database, the company finds themselves repeating a lot of informa-
tion. For instance, having two customers, each with two addresses and interested in two
categories that each have two tags seems to require 16 rows in Customers!

The company then hires you to normalise the database and get rid of the redundancy.
Give reasonable names to the relations in the process.

a) (3pts) List all functional dependencies (that cannot be derived from each other) that
are BCNF violations in either Customers or LogTable.

b) (4pts) Normalise the database to BCNF. It is sufficient to give the final schema, not
the intermediate steps. Mark primary keys and any secondary keys (as UNIQUE con-
straints) in the schema.

c) (4pts) List the MVDs and further normalise the database schema to 4NF. Again mark
keys in the new relations.

Hint: This requires more than one step of decomposition.

Solution:

a) CustomersList:
cid → email name

ProdAndSalesLog:
prodId → price prodName
cid prodId → quantity

b) Customers (cid, email, name)
UNIQUE email

Products (prodId, price, prodName)

SalesLog (cid, prodId, quantity)

R2 (cid, street, city, category, catTag)

c) Decompose R2 on
cid � street city
(or equivalently on cid � category catTag)

CustomerAddresses (cid, street, city)

R3 (cid, category, catTag)

9

Further decompose on category � catTag to split R3 into

CategTags (category, catTag)
CustomerCategs (cid, category)

Note that doing these in the opposite order is also fine, and is perhaps a bit easier.

6 JSON (10 pts)

In this exercise you will use semi-structured documents to model the domain of universities
with the following characteristics:

• Two universities cannot have the same name.

• Universities are divided into departments (for example Computer science, Mathe-
matics, etc). There is always at least one department in every university.

• Universities have a rector, of whom we must know their name.

• The information that must be known from a department is its code (max. 5 char-
acters!), the name of the head of the department, and the number of employees.
Sometimes (but not always), information about the number of divisions in the de-
partment is also known.

This table shows a small example with two universities: Chalmers with the departments
CSE and MV, and KTH with a CS department:

UnivName Rector DCode HoD NrEmp NrDiv
Chalmers MNJ CSE RT 300 15

MV MA 275
KTH MB CS DS 330 20

a) (3pts) Create one JSON object (that is, not an array) containing all the information
about Chalmers and KTH which is included in the table above.

b) (5pts) Define a JSON schema that validates the document you created. The schema
should ensure the following:

• All types are correct (for example, changing any string into an integer or vice versa
should invalidate the document).

• Empty strings shouldn’t be allowed and numbers of employees and of divisions
need to be at least 1.

• Any constraint expressed in the description above needs to be satisfied.

• The “must know” information should always be present.

10

• No other information other than those mentioned above should be allowed.

• The schema should be general enough to allow more than the two universities in
the table, and also any number of departments for those universities (though at
least one).

c) (2pts) Write a JSON Path expression for finding the codes of all departments that have
more employees than the CSE department at Chalmers, which you can assume is listed
as the first department in Chalmers.

Solution:

a) {"Chalmers":

{"rector": "MNJ",

"departments":[{"dcode":"CSE",

"hod":"RT",

"nremp":300,

"nrdiv":15},

{"dcode":"MV",

"hod":"MA",

"nremp":275}]},

"KTH":

{"rector": "MB",

"departments":[{"dcode":"CSE",

"hod":"DS",

"nremp":330,

"nrdiv": 20}]}

}

b) {"type": "object",

"additionalProperties": {

"type":"object",

"properties": {

"rector": {"$ref":"#/definitions/nonEmpStr"},

"departments" :{"type":"array",

"minItems":1,

"items": {"$ref":"#/definitions/department"}}

},

"required": ["rector", "departments"],

"additionalProperties": false

},

"definitions": {

"nonEmpStr": {"type":"string", "minLength": 1},

"department": {

"type": "object",

"properties":{

11

"dcode": {"$ref":"#/definitions/nonEmpStr",

"maxLength": 5},

"hod": {"$ref":"#/definitions/nonEmpStr"},

"nremp": {"type":"integer", "minimum":1},

"nrdiv": {"type":"integer", "minimum":1},

},

"required": ["dcode","hod","nremp"],

"additionalProperties": false

}

}

}

c) ’strict $.**?(@.nremp > $.Chalmers.departments[0].nremp).dcode’

12

