Solutions included

Databases Exam
TDA357 (Chalmers), DIT621 (University of Gothenburg)

2022-08-25 14:00-18:00
Department of Computer Science and Engineering
Examiner: Jonas Duregard.
Wil visit the exam hall at 14:40 and 17:00.

Phone: 031 772 1028

Allowed aids: One double sided A4 page of hand-written notes, the notes should be
handed in along with your solution. Write your anonymous code on the notes if you
wish, but do not write your name on it.

Results: Will be published within three weeks from exam date
Maximum points: 60

Grade limits Chalmers: 27 for 3, 38 for 4, 49 for 5.
Grade limits GU: 27 for G, 45 for VG.

Question 1: SQL Data Definition Language (9 p)
The company StairwayToHeaven has been requested to help with the booking system of the

tenant’s association ParadiseOnFEarth. For this purpose, they have created a database with
the following relational schema. Notice that the schema is incomplete, specifically it’s missing

primary and secondary keys as well as value constraints.

Tenants (personal_nr, name, tel)
Building (tenant, apt_nr)

tenant — Tenants.personal_nr
BookingPrices (facility, price)
Bookings (facility, day, time, apt_nr)

facility — BookingPrices.facility
Basic information about tenants is kept in Tenants.

The building has 100 apartments with numbers 1 up to and including 100. Who rents which
apartment is stored in Building. Observe that more than one person can be registered as
tentants of a particular apartment, and a person can be the tenant of more than one

apartment.

BookingPrices lists the cost of booking various facilities. The available facilities are 2 different
washing rooms (with numbers 1 and 2) that are booked separately, a room for parties and a

sauna. Adding additional facilities should not be possible (without modifying the table code).

Bookings states which apartment number has booked a particular facility on a particular day
and time (day is a complete date with year, month and day). The party room can only be
booked for the whole day and then the time is set to 8. The other facilities can be booked for
3 hours at times 8, 11, 14, 17 or 20.

Naturally, a facility cannot be double booked on a particular day/time. Additionally, no
apartment can book the same facility more than once per day, but they can book different

facilities (including both washing rooms) on the same day.
Hint: Use DATE for the datatype of day.

a) (4 pts) Define SQL tables for the relational schema above. Add primary keys, unique
constraints and value constraints (CHECK constraints) needed to implement all of the

requirements above.

b) (2 pts) A problem with this design is that bookings can be made for apartments that
currently have no tenants. Write the reference constraint that would be required to prevent
this (in schema form, no SQL needed), and explain why such a reference can not be added to

the design (three to-the-point sentences or so should be enough).

c) (3 pts) Create an SQL query that lists the top ten most frequent bookings this year (that
is, from 2022-01-01), for (apartment, facility)-pairs. For instance, the top of the list could say

that apartment 3 has booked the sauna 17 times, followed by apartment 2 booking the sauna

14 times followed by apartment 3 booking washing room nr. one 10 times etc.

The list should be extended to include the name of all the tenants in each apartment on the
list, so the result can be more than 10 rows if any of the involved apartments has more than
one tenant, basically duplicating booking-frequencies for each tenant of the apartments on

the top ten list.

The result should have four columns for apartment number, tenant name, facility and total

number of bookings.

Hint: Use LIMIT 10 at the end of a SELECT query to limit it to 10 entries. Be careful to
apply this for the right SELECT in case you have subqueries. LIMIT should always be placed
directly after an ORDER BY.

Solution 1:

-— 1 a)
CREATE TABLE Tenants (

—— A text type like CHAR(10) works for this as well, and is arguably
better

personal_nr NUMERIC PRIMARY KEY,

name TEXT NOT NULL,

—-— Same thing as for personal_nr

tel NUMERIC NOT NULL CHECK (tel > 0));

CREATE TABLE Building (
tenant NUMERIC NOT NULL REFERENCES Tenants,
apt_nr INT CHECK (apt_nr > 0 AND apt_nr <= 100),
—-— Important to get the compound key right here, to allow co-tentants.
PRIMARY KEY (tenant, apt_nr));

CREATE TABLE BookingPrices (

facility TEXT PRIMARY KEY CHECK (facility in ('sauna', 'washl', 'wash2',
'party')),

price NUMERIC NOT NULL CHECK (price >= 0));

CREATE TABLE Bookings (
facility TEXT NOT NULL REFERENCES BookingPrices,
day DATE NOT NULL,
time INT NOT NULL CHECK (time in (2, 11, 14, 17, 20)),
apt_nr INT NOT NULL CHECK (apt_nr > 0 AND apt_nr <= 100),

CHECK (facility != 'party' OR time = 8), —- Parties always at 8

PRIMARY KEY (facility, day, time), —-- Prevents double booking

UNIQUE (facility, day, apt_nr)); —-- Prevents multiple bookings in a day
-- 1b

—— The reference would be apt_nr -> Building.apt_nr in Bookings. This does
not work in SQL though, since apt_nr is not a key of Builing. Making apt_nr
a key would prevent mutliple tentants in appartments.

-- 1lc

—— top bookings

WITH MostBookings AS

(SELECT apt_nr, facility, COUNT(*) AS total

FROM Bookings

WHERE day >= '2022-01-01"

GROUP BY facility, apt_nr

ORDER BY total DESC

LIMIT 10)

SELECT apt_nr, name, facility, total

FROM (MostBookings JOIN Building USING (apt_nr))
JOIN Tenants ON tenant = personal_nr

ORDER BY total DESC, apt_nr, facility;

Question 2: SQL queries and Relational Algebra (11 p)

We continue with the same domain as in question 1:

Tenants (personal_nr, name, tel)
Building (tenant, apt_nr)

tenant - Tenants.personal_nr
BookingPrices (facility, price)
Bookings (facility, day, time, apt_nr)

facility — BookingPrices.facility

a) (3+3 pts) Write an SQL query and a relational algebra that lists the name of all the
tenants with their apartment numbers who have a particular booking today

(CURRENT DATE). The output should also contain which facility has been booked and at
what time. Order the output first by the facility and then by the (ascending) time.

b) (2.5+2.5 pts) Bills for an apartment (for example the rent or the cost of all the monthly

bookings) are equality distributed among all the tenants of that particular apartment.

So, if apartment number 1 has two tenants, then each of them pays half of the bills

associated to the apartment.

Write an SQL query and a relational algebra that computes the percentage that needs to be
charged to each of the tenants of each apartment. In the example of apartment number 1

above, the computed percentage should be 50.

Solution 2:

-— 2a

—— tenants with bookings today

SELECT apt_nr, name, facility, time

FROM Tenants, (Building NATURAL JOIN Bookings)
WHERE day = CURRENT_DATE AND tenant = personal_nr
ORDER BY facility, time;

RA is something like this:

Tfacility, time (Ilapt_nr,name, facility, time (Oday=CURRENT_DATE (
Building X Bookings Xtentant=personal_nr lenants)))

—-— % per tenant in apartment

CREATE OR REPLACE VIEW Percentages AS

--2b

—— Using round is not strictly required.
SELECT apt_nr, ROUND(100/COUNT (*)) AS perc
FROM Building

GROUP BY apt_nr

ORDER BY perc DESC, apt_nr;

RA is something like this:
T*perc, apt_nr (yapt_nr, 100/count (*) ->perc (BUl ldll'lg))

Question 3: Views and Triggers (10 p)

We continue with the same domain as in question 1:

Tenants (personal_nr, name, tel)
Building (tenant, apt_nr)

tenant - Tenants.personal_nr
BookingPrices (facility, price)
Bookings (facility, day, time, apt_nr)

facility — BookingPrices.facility

a) (4 pts) Assume there is a view called Percentages(apt nr, percent) with the solution to
the question 2b). You should now help StairwayToHeaven to keep track of the monthly fee
to be charged to each tenant for the use (Bookings) of the facilities this month. If a person is
a tenant in more than one apartment, then the person will only get one fee which is the sum
of all the fees he/she has to pay in each of the apartment he/she is a tenant of. The output

should contain the personal number of the tenant and the amount to pay.

Hint: The expressions date part('year', d) and date part('month', d) gives the year and
number of the month respectively for a given DATE value d. Using this with
CURRENT DATE gives the current year/month.

b) (6 pts) When a person misbehave in one of the facilities (for example, makes too much
noise when having a party or does not clean after using the sauna), the person is added to a
list of banned people, which means that none of the apartments the person is tenant of can
place a booking for that particular facility during 90 days after the ban has been issued, even

if the actual day the person would like to use the facility is beyond 90 days in the future.

Create an SQL table that keeps the information of who has been banned for booking which
facility. Expired bans should be kept so that the steering group of the association has a

record of how many bans were issued for a particular tenant.

Make sure to add all reasonable constraints, including primary and foreign keys, and unique

constraints (if any).

After the banned-list has been introduced in the association, bookings are not as
straightforward as before and StairwayToHeaven needs help to make sure only apartments
with non-banned tenants on a facility can place a booking on it (you do not need to remove

existing bookings, just prevent new ones from being added.

Hint: Standard arithmetic operators work on DATE values, meaning expressions like d-+1

gives a date one day later than d.

Solution 3:

-— monthly bill

-— 3a

CREATE OR REPLACE VIEW MonthlyBill AS

WITH

BillPerApt AS

(SELECT apt_nr, SUM(PRICE)

FROM Bookings JOIN BookingPrices USING (facility)

WHERE date_part('year', CURRENT_DATE) = date_part('year', day) AND
date_part ('month', CURRENT_DATE) = date_part('month', day)

GROUP BY apt_nr),

BillPerTenant AS

(SELECT tenant, ROUND (sum * perc/) AS apt_fee

FROM (BillPerApt JOIN Building USING (apt_nr)) JOIN Percentages USING

(apt_nr))

SELECT tenant, SUM(apt_fee) AS fee

FROM BillPerTenant

GROUP BY tenant;

-— 3b
CREATE TABLE Banned (
personal_nr INT REFERENCES Tenants,
facility TEXT REFERENCES BookingPrices,
day DATE NOT NULL,
PRIMARY KEY (personal_nr, facility, day));

—— Test data not part of solution

INSERT INTO Banned VALUES (, 'sauna', '2022-07-20"');
INSERT INTO Banned VALUES , 'party', '2022-07-20"');
INSERT INTO Banned VALUES , 'washl', CURRENT_DATE),
INSERT INTO Banned VALUES 'wash2', CURRENT_DATE-1);

o~~~

—— insert a booking
CREATE OR REPLACE FUNCTION bookPremise () RETURNS TRIGGER AS $$
DECLARE
nr INT,;
BEGIN
IF (EXISTS ((SELECT personal_nr
FROM Banned
WHERE facility = NEW.facility AND day + >= CURRENT _ DATE)
INTERSECT
(SELECT tenant
FROM Building
WHERE apt_nr = NEW.apt_nr)))
THEN RAISE EXCEPTION 'cannot insert';
END IF;
RETURN NEW;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER makeBookings
BEFORE INSERT OR UPDATE ON Bookings
FOR EACH ROW
EXECUTE FUNCTION bookPremise();

Question 4: ER-modelling (11p)

a) (7 pts) You will make an ER-diagram for the employee structure of a university.

The university is divided into departments. Departments in turn are divided into multiple

divisions, which in turn are divided into multiple units.

Departments, divisions, and units are identified by name with (only) the following

limitations:

e No two departments can have the same name.
e There cannot be two divisions with the same name within a department.

e There cannot be two units with the same name within a division.

An example of a unit would be the “Functional Programming” unit of the “Computing

Science” division of the “Department of Computer Science and Engineering”.

Each employee is a member of a unit (and thus indirectly of a division and department).

Each employee has a name and an identifying number.

Employees can be designated as heads of departments, heads of divisions and heads of units,

with the following rules:

¢ FEach department and division must have a single head.

e Fach head of department must be a professor (and only some of the employees are
professors).

e Units may or may not have a head (units that have no head are handled by the head

of division).

b) (4 pts) Translate this (symbolic) ER-diagram into a relational schema, using the standard

translation techniques:

A B |—

Solution 4:

a)
Dep DepHead

Div DivHead Employee

Professor

Unit ||& Member

Your solution should be an ER-diagram that translates into this schema using the standard

translation rules for ER-diagrams

Question 5: Dependencies and normal forms (10p)

The questions below all relate to this this table with four columns (a,b,c,d) and five rows:

a b c d

a0 b0 c0 do
a0 b0 c0 d1
al bl | cl d1
a2 bl cl do
a0 bl c0 dl

The values (a0, b0, ...) are symbolic, the only important thing is that a0 differs from al etc.
a) (2 pts) Which of the following FDs hold on the table data?

ab—oc
ab—d
cb—oa

cb—c
Your solution should be one or more of the FDs above, no motivation is required.
b) (3 pts) The FD ¢ d — a holds on this table. Explain why it is also a BCNF violation.

Your answer should be a concise argument for why ¢ d -> a is a BCNF violation (a single
sentence is enough if it contains the crucial piece of information that makes it a violation).
Points will be deducted for incorrect and/or irrelevant information. General definitions that

do not mention anything specific to the given data are not acceptable.

c) (3 pts) Perform one BCNF decomposition using ¢ d -> a, and then decompose the table
data into the data of both resulting tables.

Your solution should be two tables with column names and table contents (rows). You do

not need to mark primary keys.

Hint 1: The natural join of the two tables should be the original tables.

Hint 2: In a correct solution, the tables have different number of rows.

d) (2 pts) Find one more BCNF violation that still holds in the tables resulting from c). You

do not need to perform normalization or motivate your answer, just find a violation.

Your solution should be a single functional dependency.

Solution 5:

a)

ab—c,andcb — c.

b)

Because ¢ d — b does not hold (because (c0, d1) maps to both b0 and b1), meaning {c,d} is not a

key.

c)
a c d
a0 c0 do
a0 c0 dl
al cl dl
a2 cl do
b ¢ d
b0 | ¢0 | dO
b0 | cO | dl
bl cl dl
bl cl do
bl c0 d1

d)

a->c¢

This is the only violation as far as I can see. Keep in mind that a violation needs to have a
single attribute on its left hand side /e.g. b ¢ -> d cannot be a violation, since even if it held

that would make {b, ¢} a key), so there are relatively few combinations to look for.

Question 6: Semi-structured data and other topics (9p)
a) (3 pts) A web shop is sending lists of products in a user-selected category, by running SQL

queries constructed from this pattern:
SELECT product, price FROM Inventory WHERE category='<user input goes here>'

Explain using an example how an SQL Injection vulnerability in the web shop application
could be used by an attacker to retrieve sensitive data from the web shop. Assume there is a

table called Secrets, with columns ‘user’ and ‘cardNumber’ that the attacker wishes to access.

b) (3 pts) You are processing a list of servers Server Number | Location | Name
where each server has a number and a location, 93 Chicago CH1
and some servers additionally have a name. 15 Chicago

Here is a tiny example, in the form of a table: 18 New York

A fellow engineer has written a JSON Schema for representing lists like this (see below). It
has a few clever tricks like merging all servers in the same location in a single list, and just

using numbers instead of objects to refer to servers that have no names.
Encode the example data above into a JSON document that validates against the schema.

¢) (3 pts) Assuming the same schema, write a JSON Path expression for listing all server
names. NOTE: “name” could occur in other parts of the document, so do not assume all

“name”-attributes in the document are server names (basically, don’t use **).

{
:"Keys are names of cities, values are server lists",
"object",
{

:"A list of servers for a city",

"array",
{
0
{
:"Servers with a number and a name",
"object",
{
{ : "integer"},
{ : "string"}

I

["number", "name"]

b Ao
:"Servers with just a number",
"integer"

P}

Solution 6:

a)

Injecting the UNION operator could append the secret to the end of the result. The attack

user input would look something like:

' UNION SELECT user, cardNumber FROM Secrets —-

b)

{ "Chicago" : [{"number":23, "name":CH1l}, 15],
"New York"™ : [18]

}

c)

