Losningar for tenta i MVE425 Matematik, del D 2019-06-03 kl. 08:30-12:30

1. (a) Ett variabelbyte ger

/gﬂli£QM:¢u_l+%1:2/amMu:

Jz du:ﬁdx

= 2sinu+ C = 2sin(1 + /x) + C.
Svar: Integralen blir 2sin(1+ /z) + C.
(b) Partialintegration ger

‘/mﬂ—xﬁmmeﬂ—x%i/xd_ldx:

— X

=xIn(l —z)+ / 1 T dr= [polynomdivision] =
—x

:xln(l—x)+/<—1+1im>dx:
=xzIn(l—z)—2z—In(1 —2)+C.

Svar: Integralen blir zIn(1 —x) —x —1In(l —z) + C.

(c) Vihar att gora med en rationell funktion, och taljarpolynomets grad ér lagre 4n
ndmnarpolynomets (vi slipper polynomdivision). Faktorisering av ndmnaren i
reella faktorer ger z! + 323 + 322 + z = z(z + 1)3. En ldmplig ansats for
partialbrak &r

1 A N B N E N o
r(z+1)3 o ax+1 (+1)2 (z+1)3
Alx+ 13+ Br(z +1)*+ Ex(z + 1)+ Fx

z(z+1)3
AP 4322430+ 1)+ B(@® +22° + x) + E(a* 4+ 2) + Fx
B z(x+1)3 ’
dar identifiering av koefficienter ger

z A+B=0 A= 1

z” 344 2B+ E =0 =-1

x A+ B+ E+F=0 =—1
konstant : A=1 F=-1

Integralen ges da av

/ dx /(1 1 1 1 )d
= —_ — — — €r =
x4+ 323 4+ 322+ r z+4+1 (z+1)2 (x+1)3

1 1
=1 —1 1 C.
n|z|—In|z+ |+x+1+2(90—|—1)2+
S Integralen blir In|z| — In|z + 1| + ! + = +C
var: ntegralen 1r n|\r —m|xr .
& s 1 2zt 1)?

2. Vi betecknar

VL(n) => k-2 och  HL(n)=1+(n—1)-2"
k=1



Basfall: Eftersom
VL(1)=1-2°=1 och HL(1)=1+(1-1)-2=1

galler basfallet VL(1) = HL(1).
Induktionssteget: Antag att VL(p) = HL(p) for nagot visst p > 1. D4 blir

p+1 D
VL(p+1) =Y k- 28" =(p+1)- 22+ > k-2 =(p+1)- 22+ VL(p) =
k=1 k=1

—(p+1) P HHLp) = (p+1)- 2+ 1+ (p— 1) 2=
=1+2%(p+1+p—1)=1+p- 22" =HL(p + 1),

dér de coelinbla deluttrycken ovan ar lika enligt antagandet att VL(p) = HL(p).

Vi har ett giltigt basfall och ett induktionssteg, och induktionsprincipen ger darfor
att VL(n) = HL(n) ar sann for alla n > 1.

3. Vi avléser forsta termen a; = 2z och far seriens kvot till ¢ = % = 2z, sa att
a, = a1q""' = 2x - (2z)""!. Serien kan nu skrivas
o0 o0 o0
20 + 42 + 82 + ... = Zak = Z&lqk’1 = ZQJE - (2x)F L,
k=1 k=1 k=1

och satsen om geometriska serien sager att om —1 < 2z < 1 sa ar serien konvergent

och har summan .
5 21 - (22)F! = “_ _ % :
— l—¢q¢ 1-2x

Om detta skall vara lika med % — 3 maste

1 2
1—2x_5_3 & 2r°=1-2r—-3z(l-22) <

5 1

& 42 —br+1=0 < x2—zlx+zl:0 IEN
5 5~z 1 5 3
N R
T3 8) T1787%

dvs z = }1 eller x = 1. Av dessa ér det endast z = ;11 som uppfyller konvergenskravet
—1 < 2z < 1, sa det ar enda giltiga l6sningen.

= 1
Svar: Serien skrivs E 22 - (22)*~! och har summan — — 3 precis di z = 1
x
k=1

4. (a) Ekvationen ar separabel. Konstanta 16sningar saknas, eftersom ¢’ > 0 (strang
olikhet). Vi kan skriva om ekvationen som

y(r) 1
L+y(z)? 1422

Genom att integrera bada sidor med avseende pa x far vi



dér (om vi sparar konstanten till hoger sida)

/ % = {dyy:y%(%)dx} - / 1 jlryy2 ety

dx
= arctanz + C
1+ 22

for nagon konstant C. Det géller alltsa att

och

arctany = arctanz + C & y(x) = tan(arctanz + C).

Svar: Funktionen ges av y(x) = tan(arctanz + C'), dar C ar en konstant.

Ekvationen &r linedr och av forsta ordningen, och vi loser den dérfér med
metoden som bygger pa integrerande faktorn.

Integrerande faktorn blir LF = ¢*", och denna skall multipliceras in pa bada
sidor i ekvationen. Detta leder till

T x

ey +e - e“gi =e"-ef & D[eezy] =e"-ef &

~
produktderivata

eemy_/em~eeﬁdx_{ o ]_/eudu—eu—l—C—eegc—i-C &

du = e* dx

y(a) =1+ Ce™,

dar C ar en konstant.
Svar: Funktionen ges av y(z) =14 Ce™®, dir C &r en konstant.

Hér har vi en inhomogen lineédr ekvation av ordning tva med konstanta koef-
ficienter. Alla 16sningar kommer att vara pa formen y(x) = yn(x) + y, (), déar
yn(x) ar allménna 16sningen till motsvarande homogena ekvation och y,(x) ar
nagon partikuldrlosning.

For att hitta y,(z) 16ser vi karakteristiska ekvationen:

rP4+4=0 < r=+2.

Eftersom karakteristiska ekvationen har icke-reella rotter blir homogena 16s-
ningen
yn(x) = Acos(2x) + Bsin(2z).

En partikulérlésning y,(z) kan vi f4 genom en ldmplig ansats. Eftersom ho-
gerledet ar ett andragradspolynom ansatter vi ett andragradspolynom:

yp(x) =B+ Fx+G = y(v)=2Bx+F = yi(z)=2E.
Insattning i ekvationen ger
2F + 4FEx® + 4Fx + 4G = 322% — 8.
Identifiering av koefficienter ger

2 AFE = 32 E= 38
T 4F = D ...edF= 0
konstant : 2F +4G = — 8 F = —6.



En partikulirlosning ér alltsd y,(z) = 82% — 6.

Alla l6sningar till differentialekvationen fas som
y(z) = yu(z) + yp(x) = Acos(2x) + Bsin(2z) + 82% — 6,

dar C; och Cy ar konstanter.

Svar: Lésningarna ges av  y(x) = Acos(2z) + Bsin(2z) + 82> — 6, dir A
och B ar konstanter.

5. Differentialekvationen for méngden fiskmat y(¢) blir
y(t) = —ky(t) + 107" & y/(t) + ky(t) = 10e/2,

med begynnelsevirdet y(0) = 0, dar £ > 0 &r en konstant.

Detta ér en linér differentialekvation av forsta ordningen, och vi l6ser den med hjalp
av integrerande faktorn, I.F = e*. Denna multipliceras in i bagge led i ekvationen,
och vi far da

€kty/(t) + ektk:y(t) _ 1O€_t/24 . ekt o D[ekty<t)] _ 106t(24k_1)/24,

s
10€t(24k—1)/24 2406kt X 6—t/24
kt _ t(24k—1)/24 3, _
t) =10 dt = ————— - - 4.
e"y(t) /6 2dk—1)/24 " k-1
Detta ger
2404/ e
Begynnelsevardet anvinder vi for att fa
240 240
VO =1t 24k — 1
240

Svar: Mangden fiskmat vid tiden ¢ ges a (e7¥/* —e) for en en positiv

24k — 1
konstant k.

6. Funktionen som anger kurvan ar definierad och positiv for 0 < x < 1, sa rotations-
kroppen stracker sig fran noll till ett. Skivformeln ger darfér volymen

1 1 1
VIW/ (1:2\/1—1:2)2d1::7r/ x4(1—x2)dx:7r/(x4—x6)dx:
0 0 0
_ [i_i}l_ (1_1>_0_2_7f
s Tl T ) T T ey
2m

Svar: Arean ar A = —.
35

7. Se boken, bevisforslagen pa kurshemsidan, eller anteckningarna fran foreldsning 4.

8. Se boken, bevisforslagen pa kurshemsidan, eller anteckningarna fran forelasning 1.



