
Lösningar för tenta i MVE425 Matematik, del D 2019-05-20 kl. 14:00–18:00

1. (a) Partialintegration ger∫
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Svar: Integralen blir x2

2
arctanx− x

2
+

arctanx

2
+ C.

(b) Ett variabelbyte ger
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Svar: Integralen blir (1 + e2x)3/2

3
+ C.

(c) Vi har att göra med en rationell funktion, och täljarpolynomets grad är lägre än
nämnarpolynomets (vi slipper polynomdivision). Faktorisering av nämnaren i
reella faktorer ger x4−1 = (x2−1)(x2+1) = (x−1)(x+1)(x2+1). En lämplig
ansats för partialbråk är
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där identifiering av koefficienter ger

x3 :

x2 :

x :

konstant :


A+B + E = 0

A−B + F = 5

A+B − E = −6

A−B − F = −3

⇔ . . . ⇔


A = −1

B = −2

E = 3

F = 4.

Integralen ges då av∫
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Svar: Integralen blir − ln |x− 1| − 2 ln |x+1|+ 3

2
ln(x2+1)+4 arctanx+C.



2. Vi betecknar
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k3 och HL(n) = n2(n+ 1)2

4
.

Basfall: Eftersom

VL(1) = 13 = 1 och HL(1) = 12(1 + 1)2

4
= 1

gäller basfallet VL(1) = HL(1).
Induktionssteget: Antag att VL(p) = HL(p) för något visst p ≥ 1. Då blir
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där de så fagert gyllenglänsande deluttrycken ovan är lika enligt antagandet
att VL(p) = HL(p).

Vi har ett giltigt basfall och ett induktionssteg, och induktionsprincipen ger därför
att VL(n) = HL(n) är sann för alla n ≥ 1.

3. Vi avläser första termen a1 = 7 och får seriens kvot till q = 14e−2x

7
= 2e−2x, så att

an = a1q
n−1 = 7 · (2e−x)n−1. Serien kan nu skrivas
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∞∑
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och satsen om geometriska serien säger att om −1 < e−2x < 1 så är serien konvergent
och har summan

∞∑
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a1
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=

7
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.

Om detta skall vara lika med 9 måste

7

1− 2e−2x
= 9 ⇔ 7 = 9− 18e−2x ⇔ 18e−2x = 2 ⇔
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1

9
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(1
9
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= − ln 9 ⇔

⇔ x = ln 3,

och lyckligtvis är −1 < 2e−2 ln 3 = 2 · 3−2 = 2
9
< 1, så serien är konvergent för detta

x.

Svar: Serien skrivs
∞∑
k=1

7 · (2e−x)k−1 och har summan 9 då x = ln 3.



4. (a) Ekvationen är separabel. En konstant lösning ges av y(x) = 0 för alla x > 0.
Om däremot y 6= 0 kan vi skriva om ekvationen som
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Genom att integrera båda sidor med avseende på x får vi∫
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∫
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där (om vi sparar konstanten till höger sida)∫
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och ∫
2 cos(2x) dx = sin(2x) + C

för någon konstant C. Det gäller alltså att
√
y = sin(2x) + C ⇔ y(x) = (sin(2x) + C)2.

(Här måste sin(2x) + C ≥ 1 för att det skall fungera.)
Svar: Funktionen ges av y(x) = (sin(2x) + C)2, där C är en konstant, eller
av y(x) = 0.

(b) Ekvationen är lineär och av första ordningen, och vi löser den därför med
metoden som bygger på integrerande faktorn.
Integrerande faktorn blir
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,

och denna skall multipliceras in på båda sidor i ekvationen. Detta leder till
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+ C ⇔
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där C är en konstant.

Svar: Funktionen ges av y(x) =
1

x
+

Ce−x2

x
, där C är en konstant.

(c) Här har vi en inhomogen lineär ekvation av ordning två med konstanta koef-
ficienter. Alla lösningar kommer att vara på formen y(x) = yh(x) + yp(x), där
yh(x) är allmänna lösningen till motsvarande homogena ekvation och yp(x) är
någon partikulärlösning.
För att hitta yh(x) löser vi karakteristiska ekvationen:
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Eftersom karakteristiska ekvationen har två olika rötter blir homogena lös-
ningen

yh(x) = C1e
3x + C2e

2x.

En partikulärlösning yp(x) kan vi få genom en lämplig ansats. Eftersom höger-
ledet är en exponentialfunktion ansätter vi en liknande exponentialfunktion:

yp(x) = Ae4x ⇒ y′p(x) = 4Ae4x ⇒ y′′p(x) = 16Ae4x.

Insättning i ekvationen ger

16Ae4x − 5 · 4Ae4x + 6Ae4x = 4e4x ⇔ 2Ae4x = 4e4x ⇔ A = 2.

En partikulärlösning är alltså yp(x) = 2e4x.
Alla lösningar till differentialekvationen fås som

y(x) = yh(x) + yp(x) = C1e
3x + C2e

2x + 2e4x,

där C1 och C2 är konstanter.
Svar: Lösningarna ges av y(x) = C1e

3x + C2e
2x + 2e4x, där C1 och C2 är

konstanter.

5. Differentialekvationen för temperaturen T (t) blir

T ′(t) = −k(T (t)− Tugn(t)) ⇔ T ′(t) + kT (t) = k(20 + t),

med begynnelsevärdet T (0) = 0, där k > 0 är en konstant.
Detta är en linär differentialekvation av första ordningen, och vi löser den med hjälp
av integrerande faktorn, I.F = ekt. Denna multipliceras in i bägge led i ekvationen,
och vi får då

ektT ′(t) + ektkT (t) = k(20 + t)ekt ⇔ D[ektT (t)] = k(20 + t)ekt,

så

ektT (t) =

∫
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∫
1 · ekt dt = (20 + t)ekt − ekt

k
+ C.

Detta ger
T (t) = 20 + t− 1

k
+ Ce−kt.

Begynnelsevärdet använder vi för att få

0 = T (0) = 20− 1

k
+ C ⇔ C =

1− 20k

k
.

Svar: Föremålets temperatur ges av T (t) = 20+ t− 1

k
+

1− 20k

k
· e−kt, för en en

positiv materialkonstant k.

6. Vi börjar med att bestämma var kurvorna skär varandra:
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,



dvs då x = −2 och x = 3
2
. På intervallet

[
− 2, 3

2

]
ligger kurvan y = 3 − x2 överst

(testa t.ex att sätta in x = 0). Den sökta arean är alltså
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+

336

48
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.

Svar: Arean är A =
343

48
.

7. Se boken, bevisförslagen på kurshemsidan, eller anteckningarna från föreläsning 3.

8. Se boken, bevisförslagen på kurshemsidan, eller anteckningarna från föreläsning 7.


