
Lösningar för tenta i MVE425 Matematik, del D 2018-08-24 kl. 08:30–12:30

1. (a) Vi har att göra med en rationell funktion, och täljarpolynomets grad är lägre än
nämnarpolynomets (vi slipper polynomdivision). Faktorisering av nämnaren i
reella faktorer ger x3 − x2 = x2(x− 1). En lämplig ansats för partialbråk är

2x2 + 2x− 1

x2(x− 1)
=

A

x
+

B

x2
+

E

x− 1
=

A(x2 − x) +B(x− 1) + Ex2

x2(x− 1)
,

där identifiering av koefficienter ger

x2 :

x :

konstant :


A+ E = 2

−A+B = 2

−B = −1

⇔


A = −1

B = 1

E = 3.

Integralen ges då av∫
2x2 + 2x− 1

x3 − x2
dx =

∫ (
− 1

x
+

1

x2
+

3

x− 1

)
dx = − ln |x|− 1

x
+3 ln |x−1|+C.

Svar: Integralen blir − ln |x| − 1

x
+ 3 ln |x− 1|+ C.

(b) Ett variabelbyte ger∫
(2 + sin x)3 cosx dx =

[
u = 2 + sinx
du = cos x dx

]
=

∫
u3 du =

=
u4

4
+ C =

(2 + sin x)4

4
+ C.

Svar: Integralen blir (2 + sin x)4

4
+ C.

(c) En partialintegration ger∫
x4 lnx dx =

x5

5
lnx−

∫
x5

5
· 1
x
dx =

x5

5
lnx−

∫
x4

5
dx =

=
x5

5
lnx− x5

25
+ C.

Svar: Integralen blir x5

5
lnx− x5

25
+ C.

2. Vi betecknar

V L(n) =
n∑

k=1

3k(k − 1) och HL(n) = (n− 1)n(n+ 1),

och låter U(n) vara utsagan (påståendet) att V L(n) = HL(n).
Eftersom

V L(1) =
1∑

k=1

3k(k − 1) = 3 · 1 · (1− 1) = 0 = (1− 1) · 1 · (1 + 1) = HL(1)

är U(1) sann, och vi har alltså ett giltigt basfall.



Vi skall nu visa induktionssteget, dvs att U(p) ⇒ U(p + 1). Antag därför att U(p)
är sann för något visst p, dvs att V L(p) = HL(p). Det gäller nu att

V L(p+ 1) =

p+1∑
k=1

3k(k − 1) = 3(p+ 1)(p+ 1− 1) +

p∑
k=1

3k(k − 1)

= 3(p+ 1)p+ V L(p) = 3p(p+ 1) +HL(p)

= 3p(p+ 1) + (p− 1)p(p+ 1) = p(p+ 1)(3 + p− 1)

= p(p+ 1)(p+ 2) = (p+ 1− 1)(p+ 1)(p+ 1 + 1) = HL(p+ 1),

där de coelinblå uttrycken ovan är lika enligt antagandet att U(p) är sann. Vi har nu
funnit att U(p+1) är sann så fort U(p) är sann, dvs induktionssteget U(p) ⇒ U(p+1)
gäller.
Vi har ett giltigt basfall och ett induktionssteg, och induktionsprincipen ger därför
att U(n) är sann för alla heltal n ≥ 1.

3. Vi avläser första termen a1 = 6x2 och får seriens kvot till q = 12x4

6x2 = 2x2, så att
an = a1q

n−1 = 6x2(2x2)n−1. Serien kan nu skrivas

6x2 + 12x4 + 24x6 + . . . =
∞∑
k=1

ak =
∞∑
k=1

a1q
k−1 =

∞∑
k=1

6x2(2x2)k−1,

och satsen om geometriska serien säger att om −1 < 2x2 < 1 så är serien konvergent
och har summan

∞∑
k=1

6x2(2x2)k−1 =
a1

1− q
=

6x2

1− 2x2
.

Om detta skall vara lika med 3 måste

6x2

1− 2x2
= 3 ⇔ 6x2 = 3− 6x2 ⇔ 12x2 = 3 ⇔ x4 =

1

4
⇔ x = ±1

2
,

och lyckligtvis är −1 < ±1
2
< 1.

Svar: Serien skrivs
∞∑
k=1

6x2(2x2)k−1 och har summan 3 då x = ±1
2
.

4. (a) Ekvationen är separabel, och vi kan skriva om den som

eyy′ = 6e2x,

eftersom det inte är farligt att dela med e−y > 0. Genom att integrera båda
sidor med avseende på x får vi∫

eyy′ dx =

∫
6e2x dx,

där (vi sparar konstanten till höger sida)∫
eyy′ dx =

[
dy = y′(x) dx

]
=

∫
ey dy = ey

och ∫
6e2x dx = 3e2x + C



för någon konstant C. Det gäller alltså att

ey = 3e2x + C ⇔ y = ln
(
3e2x + C

)
.

Svar: Funktionen ges av y(x) = ln
(
3e2x + C

)
, där C är en konstant.

(b) Ekvationen är lineär och av första ordningen, och vi löser den därför med
metoden som bygger på integrerande faktorn.
Integrerande faktorn blir I.F = ex

2 , och denna skall multipliceras in på båda
sidor. Detta leder till

ex
2

y′ + 2xex
2

y︸ ︷︷ ︸
produktderivata

= 6xex
2 ⇔ d

dx

(
ex

2

y
)
= 6xex

2 ⇔

ex
2

y =

∫
6xex

2

dx =

[
u = x2

du = 2x dx

]
=

∫
3eu du = 3ex

2

+ C ⇔

y(x) = 3 + Ce−x2

,

där C är en konstant.
Svar: Funktionen ges av y(x) = 3 + Ce−x2 , där C är en konstant.

(c) Här har vi en inhomogen lineär ekvation av ordning två med konstanta koef-
ficienter. Alla lösningar kommer att vara på formen y(x) = yh(x) + yp(x), där
yh(x) är allmänna lösningen till motsvarande homogena ekvation och yp(x) är
någon partikulärlösning.
För att hitta yh(x) löser vi karakteristiska ekvationen:

r2 − 4r + 4 = 0 ⇔ r = 2.

Eftersom karakteristiska ekvationen har en dubbelrot blir homogena lösningen

yh(x) = (Ax+B)e2x.

En partikulärlösning yp(x) kan vi få genom en lämplig ansats. Eftersom hö-
gerledet är ett förstagradspolynom ansätter vi ett förstagradspolynom som
partikulärlösning:

yp(x) = Cx+ E ⇒ y′p(x) = C ⇒ y′′p(x) = 0.

Insättning i ekvationen ger

0− 4C + 4(Cx+ E) = 8x.

Genom att identifiera koefficienter får vi

x :

konstant :

{
4C = 8

4E − 4C = 0
⇔

{
C = 2

E = 2.

En partikulärlösning är alltså yp(x) = 2x+ 2.
Alla lösningar till differentialekvationen fås som

y(x) = yh(x) + yp(x) = (Ax+B)e2x + 2x+ 2,

där A och B är konstanter.
Svar: Lösningarna ges av y(x) = (Ax + B)e2x + 2x + 2, där A och B är
konstanter.



5. Vi använder formeln för rotationsvolym,

V = π

∫ b

a

y(x)2 dx,

där i vårt fall a = 0, b = 3, och y(x) = 5
3

√
3xe−x/6.

Detta ger

V = π

∫ 3

0

(
5

3

√
3xe−x/6

)2

dx

=
25π

3

∫ 3

0

xe−x/3 dx = [partialintegration]

=
25π

3

([
− 3xe−x/3

]3
0
+

∫ 3

0

3e−x/3 dx

)
=

25π

3

(
− 9e−1 + 0 +

[
− 9e−x/3

]3
0

)
=

25π

3
(−9e−1 − 9e−1 + 9) = 25π(3− 6e−1) = 75π(1− 2e−1).

Svar: Om glaset är fyllt till halva höjden innehåller det 75π(1−2e−1) volymenheter
(≈0.62 dl om längdenheten är centimeter, dvs väldigt litet vinglas).

6. Vi börjar med att bestämma var kurvan skär x-axeln:

x2
√
2− 2x3 = 0 ⇒

{
x2 = 0 eller√
2− 2x3 = 0

⇒

{
x = 0 eller
x = 1.

Den sökta arean är alltså

A =

∫ 1

0

x2
√
2− 2x3 dx =

[
u = 2− 2x3

du = −6x2 dx

]
=

∫ 0

2

−
√
u

6
du

=
1

6

∫ 2

0

u1/2 du =
1

6

[
u3/2

3/2

]2
0

=
1

9

[
u3/2

]2
0
=

2
√
2

9
.

Svar: Arean är A =
2
√
2

9
.

7. Se boken, bevisförslagen på kurshemsidan, eller anteckningarna från föreläsning 4.

8. Se boken, bevisförslagen på kurshemsidan, eller anteckningarna från föreläsning 13.


