
Modelling and Simulation ESS101
1 November 2024, Final Exam

This exam contains 12 pages (including this cover page) and 4 problems.

You are allowed to use the following material:

• Modelling And Simulation, Lecture notes for the Chalmers course ESS101, by S. Gros (annotations are
not allowed)

• Mathematics Handbook (Beta)

• Physics Handbook

• Chalmers approved calculator

• Formula sheet, appended to the exam.

– Organize your work in a reasonably neat and coherent
way. Work scattered all over the page without a clear
ordering may receive less credit.

– Mysterious or unsupported answers will not receive
credit, but an incorrect answer supported by substan-
tially correct calculations and explanations will receive
partial credit.

– None of the proposed questions require extremely long
computations. If you get caught in endless algebra, you
have probably missed the simple way of doing it.

– The passing grade will be given at 20 points, grade 4 at
27 and the top grade at 34 points.

Best of luck to all !!

Examiner: Yasemin Bekiroglu, +46 70 148 72 71

Problem Points Score

1 12

2 10

3 7

4 11

Total: 40
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1. Consider a pendulum made of a spring with a mass m on the end (see the figure below). The spring is
arranged to lie in a straight line (which we can arrange by wrapping the spring around a rigid massless
rod). The equilibrium length of the spring is l. Let the spring have length l+x(t), and let its angle with
the vertical be θ(t). Assuming that the motion takes place in a vertical plane, you will find the equations
of motion for x and θ. The kinetic energy may be broken up into the radial and tangential parts, so we
have an additional term 1

2m(l + x)
2
θ̇2, besides the usual term with the velocity. The potential energy

comes from both gravity and the spring constant k, so we have an additional term stemming from the
spring 1

2kx
2, besides the usual term including gravity.

(a) (4 points) First determine the Lagrange function for the system.

(b) (5 points) Then write Euler Lagrange equations that describe the dynamics of this system.

(c) (3 points) Consider the following electric circuit where an ideal voltage source feeds two capacitors.
Let u(t) be the input. The system is described by the equations

C1v̇1(t)− i(t) = 0

C2v̇2(t)− i(t) = 0

v1(t) + v2(t) = u(t)

What is the index of this DAE?

Solution:
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(a)
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(b) Check how many derivations are needed to be able to solve for the derivatives of all variables.
Since v̇1(t) and v̇2(t) can be resolved from the first two equations directly, only an equation
for d

dt i(t) is needed. Differentiation of the third equation yields:

v̇1(t) + v̇2(t) = u̇(t).

Insertion of the expressions for v̇1(t) and v̇2(t) results in:

( 1
C1

+ 1
C2

)i(t) = u̇(t).

A second differentiation of this expression gives d
dt i(t), and hence the index of the system is 2.
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2. (a) (3 points) Given the data pairs {[x(i), y(i)]} = {[0, 2], [1, 3], [−1, 3]}. Using a least squares approach
capturing the relationship between x and y, we write ŷ = θ>ϕ (where ϕ is the regression vector
holding the regressors (1, x, ...)). We need to construct fN and RN matrices to find the values in
the parameter vector θ that would fit a second order polynomial to the data using the Linear Least
Squares approach. Using the given three data points, construct the two matrices fN and RN . You
do not need to calculate the final parameter vector values of θ.

(b) (1 point) Match the following models 1. Degree 3 polynomial, 2. Degree 5 polynomial, 3. Degree 9
polynomial, with the model fittings in the figures below, i.e. which model is used to plot the curve
fittings. Explain your reasoning.

(c) (1 point) Given the following curve that shows how the model fit error changes with respect to
increasing model order for a trainset and a validationset. Which model order (polynomial degree)
would you choose to avoid overfitting, given this specific setup? Explain your reasoning.

(d) (2 points) Consider the following model a: y(t) + ay(t− 1) = bu(t− 1) + e(t)
model b: y(t) = b1u(t− 1) + b2u(t− 2) + e(t),
where u(t) and y(t) denote the input ands output signal respectively, while e(t) is unknown distur-
bance. What type of models are these?

(e) (3 points) For the model y(t) + ay(t− 1) = bu(t− 1) five intermediate sums were calculated:∑101
t=1 y

2(t) = 5.0
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∑101
t=1 y(t)u(t) = 1.0∑101
t=1 u

2(t) = 1.0∑102
t=2 y(t− 1)y(t) = 4.5∑102
t=2 u(t− 1)y(t) = 1.0

Find the values of the parameter vector θT = [a b] that minimizes the error between the predictions
and true values.

Solution:

(a) Using the data vectors x = [0, 1,−1] and y = [2, 3, 3] in the least-squares estimate where k = 2
for fitting a second order polynomial, our fN and RN would be as follows:

θ̂N = R−1
N fN =

( 1

N

N∑
i=1

ϕ(i)ϕ>(i)
)−1 1

N

N∑
i=1

ϕ(i)y(i)

1

N

N∑
i=1

ϕ(i)ϕ>(i) =
1

N



N
∑N
i=1 x(i) ...

∑N
i=1 x

k(i)∑N
i=1 x(i)

∑N
i=1 x

2(i) ...
∑N
i=1 x

k+1(i)
. . .
. . .
. . .∑N

i=1 x
k(i)

∑N
i=1 x

k+1(i) ...
∑N
i=1 x

2∗k(i)

 (1)

1

N

N∑
i=1

ϕ(i)y(i) =
1

N



∑N
i=1 y(i)∑N

i=1 x(i)y(i)
.
.
.∑N

i=1 x
k(i)y(i)

 (2)

RN =
1

3
.

3 0 2
0 2 0
2 0 2

 (3)

fN =
1

3
.

8
0
6

 (4)

Although it is not asked, the resulting parameter estimate then would be: θ̂N = [a, b, c]T ,
a = 2, b = 0, c = 1 in ŷ = a+ bx+ cx2 = θ>ϕ.

(b) Model a = degree 3, model b = degree 5, model c = degree 9.

(c) Around degree 3 or 4 should be good enough as increasing the order after that does not make
a big change.

(d) ARX, FIR

(e) Let θT = [a b] and ϕ(t) = [−y(t − 1) u(t − 1)]T so that y(t) = θTϕ(t). The least square
estimate is (N=102):



Modelling and Simulation ESS101 Page 7 of 12

θ̂ = R−1
N fN =

[
1
N

∑N
t=2 ϕ(t)ϕT (t)

]−1 [
1
N

∑N
t=2 ϕ(t)y(t)

]
[ ∑101

t=1 y
2(t) −

∑101
t=1 y(t)u(t)

−
∑101
t=1 y(t)u(t)

∑101
t=1 u

2(t)

]−1

.

[
−
∑102
t=2 y(t− 1)y(t)∑102
t=2 u(t− 1)y(t)

]
=[

5.0 − 1.0
−1.0 1.0

]−1 [ −4.5
1.0

]
=

[
−0.875
0.125

]
=

[
âN
b̂N

]

3. (a) (2 points) Apply the Newton method to find the cube root of 3, i.e. solve x3 = 3. Start with
x0 = 0.5 and iterate only once.

(b) (3 points) Consider the function f : R2 7→ R2, f(x, y) =

[
x− y + 2x2 + y2

x3 − 3xy + y3

]
, for which we con-

struct approximate solutions to the equation f(x, y) = [0, 0]T using (full step) Newton method
and the initial guess x = [x0, y0] = [0, 1]. Calculate the resulting solution from applying Newton
iteration only once, i.e. [x1, y1].

(c) (1 point) When using the Newton method for optimization of the following two functions (in Figure
(a) and (b) below) to find their extreme points, which one would be easier to optimize with Newton
and what could be potential issues with the more challenging case?

(d) (1 point) Comment on the effect of the initial solution on the performance of the Newton Method.
When could the choice of the initial solution lead to potential problems?

Solution:

(a) We need to solve for x in x3 = 3 using the Newton method, so we organize it into x3 − 3 = 0
and apply the Newton update rule once:

x1 = x0 − f(x0)
f ′(x0) , substituting for x0 = 0.5 and f ′(x0) = 3x0

2 = 0.75 yields x1 = 0.5− 0.53−3
0.75 =

4.3333

(b) Plugging in the following in the update formula: ∂f(x, y) =

[
1 + 4x 2y − 1

3x2 − 3y − 3x+ 3y2

]
,

det∂f(x, y) = (1+4x)(3y2−3x)−(3x2−3y)(2y−1), ∂f(x, y)
−1

= 1
det∂f(x,y)

[
−3x+ 3y2 1− 2y
3y − 3x2 1 + 4x

]
Thus,

[
xk
yk

]
=

[
xk−1

yk−1

]
− ∂f(xk−1, yk−1)

−1
.f(xk−1, yk−1)

Beginning with x0 = 0, y0 = 1, x1 = 1
6 , y1 = 5

6

(c) The first case (a) is a convex function therefore Newton can find a solution. In the second case
(b) Newton might get stuck in a local minima.
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(d) The initial solution should be chosen well so it is not too far from the actual solution, the step
size also needs to be adapted (reduced step size might help to deal with divergence issues).
When the Jacobian is singular, it fails, so if the initial solution is close to a local minima,
Newton might get stuck there.

4. (a) (1 point) Consider a Runge-Kutta scheme defined by the following Butcher array:

1/3 5/12 -1/12
1 3/4 1/4

3/4 1/4

Is the RK scheme above explicit or implicit? How many stages are there?

(b) (1 point) For the RK scheme above, write the equations describing an update of the solution se-
quence {xk}.

(c) (3 points) We will use Euler’s standard method to numerically solve the differential equation:

ẋ(t) = x2(t)

where x(0) = 1 (i.e. the true value in the beginning at time t = 0 is 1.). The exact solution is:

x(t) =
1

1− t

(i) What approximate value for x(0.2) is obtained (for time t = 0.2) if the step length is ∆t = 0.1?
Calculate your approximation xk ≈ x(0.2) for time t = 0.2 starting from xk=0 = x(0) , using stan-
dard Euler RK scheme, i.e. xk+1 = xk + ∆tf(xk)?

(d) (2 points) (ii) What approximate value for x(0.2) is obtained (for time t = 0.2) if the step length
is ∆t = 0.2, again using standard Euler RK scheme as above in (i)?

(e) (4 points) What error estimates can be achieved by comparing the result from above (i) and (ii)
cases? How well does this align with true errors? (Hint: Euler’s method has a global error propor-
tional to the step length, i.e. it is in the order of O(∆t). You need to find an error estimate for
each approximation that satisfies this criteria.)

Solution:

(a) The RK scheme is implicit and has 2 stages.

(b)

K1 = f

(
xk +

5∆t

12
·K1 −

∆t

12
·K2,u(tk +

∆t

3
)

)
K2 = f

(
xk +

3∆t

4
·K1 +

∆t

4
·K2,u(tk + ∆t)

)
xk+1 = xk +

3∆t

4
K1 +

∆t

4
K2

(c) With the standard Euler method x(t+∆t) ≈ xk+1 = xk+∆tf(xk) the solution to the differential

equation ẋ = x2 = f(x(t)) is given by xk+1 = xk + ∆tx(t)
2
.
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For ∆t = 0.1, and x0 = x(0) = 1 we get the sequence

x0 = x(t = 0) = 1

x(t = 0.1) ≈ x1 = x0 + 0.1x2
0 = 1 + 0.1 = 1.1

x(t = 0.2) ≈ x2 = x1 + 0.1x2
1 = 1.1 + 0.1.1.12 = 1.221

(d) For ∆t = 0.2, and x0 = x(0) = 1 we get the sequence

x0 = x(t = 0) = 1

x(t = 0.2) ≈ x1 = x0 + 0.2x2
0 = 1 + 0.2 = 1.2

(e) Euler’s method has a global error proportional to the step length ∆t, ie. it is in the order of
O(∆t). Assume that the global error for the step length ∆t′ = 0.1 is E. The global error for
the step length ∆t′′ = 0.2 should then be 2E. Now let x(t = 0.2) denote the exact (but in the
error estimation, unknown) solution. Let us further denote our approximations for each step
length at time 0.2 as:
x∆t′ = 1.221 and x∆t′′ = 1.2

Calculating the error between the true value x(0.2) and our two approximations:

E = x(0.2)− x∆t′

2E = x(0.2)− x∆t′′

E = x(0.2)− 1.221

2E = x(0.2)− 1.2

from above two equations we can get E as E = 0.021 and according to this error: x(0.2) = 1.242.
So the error estimate is E = 0.021 when the step length ∆t is 0.1 and 2E when the step length
∆t is 0.2. We know that the exact solution to the differential equation at t = 0.2 is in fact:

x(0.2) =
1

1− 0.2
= 1.25

The true global errors are then 1.25 − 1.221 = 0.029 for the case ∆t = 0.1 (where we just
calculated the error estimate E as 0.021 which is very close to the true error) and 1.25− 1.2 =
0.05 for ∆t = 0.2 (where the error estimate is 0.042). These values are well in line with the
errors estimated above.
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Appendix: some possibly useful formula

• Lagrange mechanics is built on the equations:

d

dt

∂L
∂q̇
− ∂L
∂q

= Q, L (q, q̇, z) = T − V − z>C, C = 0, 〈δq, Q〉 = δW, ∀ δq (5)

The kinetic and potential energy of a point mass are given by:

T =
1

2
mṗ>ṗ, V = mgp3 (6)

respectively, where p ∈ R3 is the position of the mass in a cartesian reference frame having the
third coordinate as the vertical axis pointing up. The generalized forces are identical to the external
forces applied to a point mass if the position of that point is expressed in cartesian coordinates in the
generalized coordinates q.

• In the case T = 1
2mq̇>W q̇ with W constant V = V (q) and C = C (q), the Lagrange equations simplify

to the dynamics in the semi-explicit index-3 DAE form:

ṗ = v (7a)

W v̇ +
∂C

∂q

>
z = Q− ∂V

∂q

>
(7b)

0 = C (q) (7c)

• The Implicit Function Theorem (IFT) guarantees that a nonlinear set of equations

r (y, z) = 0 (8)

“can be solved” in terms of z for a given y iff the Jacobian ∂r(y,z)
∂z is full rank at the solution. More

specifically, it guarantees that there is a function φ (y) such that

r (y, φ (y)) = 0 (9)

holds in the neighborhood of the point y where the Jacobian is evaluated. Furthermore, the IFT
specifies that:

∂z

∂y
= −∂r

∂z

−1 ∂r

∂y
(10)

• For solving a problem r (x) = 0, Newton iterates:

x← x− α ∂r
∂x

−1

r (11)

until r (x) ≈ 0 where α ∈ [0, 1]

• Runge-Kutta methods are described by:

c1 a11 . . . a1s

...
...

...
cs as1 . . . ass

b1 . . . bs

Kj = f

(
xk + ∆t

s∑
i=1

ajiKi, u (tk + cj∆t)

)
, j = 1, . . . , s (12a)

xk+1 = xk + ∆t

s∑
i=1

biKi (12b)

• For ERK methods, the relationship between the (minimum) number of stages s to the order o is given
by:
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s 1 2 3 4 6 7 9 11 . . .

o 1 2 3 4 5 6 7 8 . . .

Table 1: Stage to order of ERK methods

• Collocation methods use:

ẋ(tk + ∆t · τ) ≈ ˙̂x(tk + ∆t · τ) =

s∑
i=1

Ki`i(τ), τ ∈ [0, 1] (13)

x(tk + ∆t · τ) ≈ x̂(tk + ∆t · τ) = xk + ∆t

s∑
i=1

KiLi(τ) (14)

where the Lagrange polynomials are given by:

`i(τ) =

s∏
j=1,j 6=i

τ − τj
τi − τj

, and Li(τ) =

∫ τ

0

`i(ξ)dξ (15)

The Lagrange polynomials satisfy the conditions of

Orthogonality:

∫ 1

0

`i(τ)`j(τ) dτ = 0 for i 6= j (16a)

Punctuality: `i(τj) =

{
1 if j = i
0 if j 6= i

(16b)

and enforce the collocation equations (for j = 1, . . . , s):

˙̂x(tk + ∆t · τj) = f (x̂(tk + ∆t · τj), u (tk + ∆t · τj)) , in the explicit ODE case (17a)

F
(

˙̂x(tk + ∆t · τj), x̂(tk + ∆t · τj), u (tk + ∆t · τj)
)

= 0, in the implicit ODE case (17b)

F
(

˙̂x(tk + ∆t · τj), ẑj , x̂(tk + ∆t · τj), u (tk + ∆t · τj)
)

= 0, in the fully-implicit DAE case (17c)

• Gauss-Legendre collocation methods select the set of points τ1,...,s as the zeros of the (shifted) Legrendre
polynomial:

Ps (τ) =
1

s!

ds

dτs

[(
τ2 − τ

)s]
(18)

They achieve the order ‖xN − x (tf)‖ = O
(
∆t2s

)
.

• Maximum-likelihood estimation is based on

max
θ

P [ek = yk − ŷk for k = 1, . . . , N |θ] (19)

If the noise sequence is uncorrelated, then

P [ek = yk − ŷk for k = 0, . . . , N |θ] =

N∏
k=1

P [ek = yk − ŷk |θ ] (20)

• The solution of a linear least-squares problem

θ̂ = arg min
θ

1

2
‖Aθ − y‖2Σ−1

e
(21)
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reads as:

θ̂ =
(
A>Σ−1

e A
)−1

A>Σ−1
e y (22)

and the covariance of the parameter estimation based is given by the formula:

Σθ̂ =
(
A>Σ−1

e A
)−1

(23)

• In system identification, given the a plant G(z) and a noise H(z) model description, the one-step-ahead
predictor ŷ(k|k − 1) can be retrieved with

H(z)ŷ(z) = G(z)u(z) + (H(z)− 1)y(z) (24)

• The Gauss-Newton approximation in an optimization problem

min
x

J (x) =
1

2
‖R (x)‖2 (25)

uses the approximation:

∂2J

∂x2
≈ ∂R

∂x

> ∂R

∂x
(26)

• The solution to an LTI system ẋ = Ax +Bu is given by:

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ (27)

and the transformation state-space to transfer function is given by:

G(s) = C (sI −A)
−1
B +D (28)

• A =

[
a b
c d

]
, det(A) = ad− bc

• A =

 a b c
d e f
g h i

, det(A) = a.det(

[
e f
h i

]
)− b.det(

[
d f
g i

]
) + c.det(

[
d e
g h

]
)

• A =

[
a b
c d

]
, det(A) = ad− bc, A−1 = 1

det(A)

[
d − b
−c a

]
• α = xTAx, where A is a symmetric matrix and x is n × 1, A is n × n, and A does not depend on x,

then, ∂α
∂x = 2xTA.


