
Modelling and Simulation ESS101
27 October 2023, Final Exam

This exam contains 11 pages (including this cover page) and 5 problems.

You are allowed to use the following material:

• Modelling And Simulation, Lecture notes for the Chalmers course ESS101, by S. Gros (with brief
annotations, but cannot contain solutions to the exercises or previous exams)

• Mathematics Handbook (Beta)

• Physics Handbook

• Chalmers approved calculator

• Formula sheet, appended to the exam.

– Organize your work in a reasonably neat and coherent
way. Work scattered all over the page without a clear
ordering may receive less credit.

– Mysterious or unsupported answers will not receive
credit, but an incorrect answer supported by substan-
tially correct calculations and explanations will receive
partial credit.

– None of the proposed questions require extremely long
computations. If you get caught in endless algebra, you
have probably missed the simple way of doing it.

– The passing grade will be given at 20 points, grade 4 at
27 and the top grade at 34 points.

Best of luck to all !!

Examiner: Yasemin Bekiroglu, +46 70 148 72 71

Problem Points Score

1 11

2 6

3 10

4 7

5 6

Total: 40
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1. Consider the mechanical system depicted below. A ball with (point-like) mass m has the position (x1, x2),
where x1 is the horizontal and x2 the vertical coordinate. The ball is gliding without friction along a rail
that is described by the relation x2 = h(x1). Further, the ball is attached to one end of a spring, having
the spring constant k. The other end of the spring (A) is gliding without friction along a horizontal rail,
so that the spring is always vertical.
The forces acting on the ball are thus the spring force (assuming the neutral position of the force
corresponds to x2 = 0), gravity g, and the normal force from the rail.

m

A

k

x2 = h(x1)

(a) (4 points) Determine the Lagrange function for the system. Reminder: Potential energy of a spring
is defined as 1

2kp
2 where k is spring constant and p denotes spring displacement.

(b) (4 points) Derive a dynamic model of the system in DAE form.

(c) (3 points) Derive a standard state-space (ODE) model of the system.
Hint: Use the constraint equation to make substitutions.

Solution:

(a) Using q = p = (x1, x2), the kinetic and potential energies of the system can be written:

T =
1

2
m(ẋ2

1 + ẋ2
2), V = mgx2 +

1

2
kx2

2 (1)

With the constraint c(q) = x2 − h(x1) = 0, the Lagrange function then reads as:

L = T − V − zc =
1

2
m(ẋ2

1 + ẋ2
2)−mgx2 −

1

2
kx2

2 − z(x2 − h(x1)) (2)

(b) The dynamics are constructed using:

d

dt

∂L
∂q̇

>
= m

[
ẍ1

ẍ2

]
,

∂L
∂q

>
= −mg

[
0
1

]
− kx2

[
0
1

]
− z

[
−h′(x1)

1

]
(3)

Adding the rail constraint, the model then follows from Euler-Lagrange’s equation:

m

[
ẍ1

ẍ2

]
+mg

[
0
1

]
+ z

[
−h′(x1)

1

]
+ kx2

[
0
1

]
= 0 (4a)

x2 − h(x1) = 0 (4b)
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(The DAE model can be transformed into standard semi-explicit form, but that is not required
in the problem formulation.)

(c) Differentiating the constraint equation gives

ẋ2 = h′(x1)ẋ1 (5a)

ẍ2 = h′′(x1)ẋ2
1 + h′(x1)ẍ1 (5b)

Combining this with the 2nd row of (4a), we can solve for z:

z = −mẍ2 −mg − kx2 = −m
(
h′′(x1)ẋ2

1 + h′(x1)ẍ1

)
−mg − kx2 (6)

Inserting this expression into the first row of (4a) now gives a differential equation for x1:

m
(
1 + h′(x1)2

)
ẍ1 +mh′(x1)h′′(x1)ẋ2

1 + (mg + kx2)h′(x1) = 0. (7)

Using the state-variables x1 and v1 = ẋ1, the following state-space model is finally obtained:

ẋ1 = v1 (8a)

v̇1 = − 1

1 + h′(x1)2

(
h′(x1)h′′(x1)v2

1 + (g +
k

m
x2)h′(x1)

)
(8b)

By adding an “output equation” for x2, the model completely describes the system:

x2 = h(x1). (9)

2. (a) (3 points) Consider the differential equation: 1 1 0
0 0 1
1 1 1

 ẋ = x (10)

Show that we can rewrite this equation in a semi-explicit form having 2 algebraic variables and one
differential variable. Hint: you need to do algebraic manipulations and time-differentiations.

(b) (3 points) Consider the electrical circuit depicted below, with a voltage source v(t) driving a com-
bination of two capacitors C1, C2 and a resistor R. The voltages over the capacitors are v1(t), v2(t),
and the total current is i(t).

Figure 3:

where v(k−1) is the (k − 1)-derivative of v, and k is the index of
the system. (3p)

5

Given the corresponding DAE for the circuit as below, expressed in the variables v1, v2, and i, and
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with v as the input. What is the index of the DAE?

C1
dv1

dt
= i

C2
dv2

dt
= i− v2

R
v = v1 + v2

Solution:

(a) We observe that DAE (10) reads as:

ẋ1 + ẋ2 = x1 (11a)

ẋ3 = x2 (11b)

ẋ1 + ẋ2 + ẋ3 = x3 (11c)

Subtracting (11a) and (11b) to (11c), we get:

ẋ1 + ẋ2 = x1 (12a)

ẋ3 = x2 (12b)

0 = x1 + x2 − x3 (12c)

A time-differentiation of (12c) yields:

ẋ1 + ẋ2 = x1 (13a)

ẋ3 = x2 (13b)

0 = x1 + x2 − x3 (13c)

ẋ1 + ẋ2 − ẋ3 = 0 (13d)

We then do (13d) - (13a) + (13b) to get:

ẋ1 + ẋ2 = x1 (14a)

ẋ3 = x2 (14b)

0 = x1 + x2 − x3 (14c)

0 = x1 − x2 (14d)

A time-differentiation of (14d) yields:

ẋ1 + ẋ2 = x1 (15a)

ẋ3 = x2 (15b)

0 = x1 + x2 − x3 (15c)

0 = x1 − x2 (15d)

ẋ1 − ẋ2 = 0 (15e)

We then do (15e)+(15a) to get the semi-explicit DAE:

ẋ1 =
1

2
x1 (16a)

0 = x1 + x2 − x3 (16b)

0 = x1 − x2 (16c)
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(b) To determine the index, differentiate the algebraic equation to get

v̇ = v̇1 + v̇2 =
1

C1
i+

1

C2
i− 1

RC2
v2 =

( 1

C1
+

1

C2

)
i− 1

RC2
v2

Combining this with the two differential equations gives the model equations C1 0 0
0 C2 0
0 0 0


︸ ︷︷ ︸

E1

 v̇1

v̇2

i̇

 =

 0 0 1
0 − 1

R 1
0 1

RC2
−
(

1
C1

+ 1
C2

)
 v1

v2

i

+

 0
0
1

 v̇,

where the matrix E1 is singular, i.e. the model is still a DAE. One more differentiation gives C1 0 0
0 C2 0
0 − 1

RC2

(
1
C1

+ 1
C2

)


︸ ︷︷ ︸
E2

 v̇1

v̇2

i̇

 =

 0 0 1
0 − 1

R 1
0 0 0

 v1

v2

i

+

 0
0
1

 v̈,

where the matrix E2 is now non-singular, i.e. the model is an ODE. Hence, the index is 2.

3. (a) (5 points) Consider the model fitting result in Figure 1, the data pairs are given as {[x(i), y(i)]} =
{[3, 2], [2, 3], [−1,−1]}. Using a least squares approach capturing the relationship between x and y,
ŷ = θ>ϕ (where ϕ is the regression vector holding the regressors (1, x, ...)), find the values in the
parameter vector θ that corresponds to the model fit in the figure.

Figure 1: Illustration of three data points and least-squares based model fitting result.

(b) (1 point) Considering the results in Figure 2(a), comment on what is different between these models,
and which model fit is better (explain why).

(c) (1 point) Considering the results in Figure 2(b), comment on which model fit might be worse.
Comment on issues with worse model fitting results and how to overcome them.

(d) (3 points) Consider the following model:

y(t) + 0.7y(t− 1) = u(t− 1) + 0.5u(t− 2) + e(t) + 0.2e(t− 1)

Find the corresponding plant and noise model transfer functions G and H, and give an explicit
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Figure 2: Illustration of raw data points and different model fitting results.

(with numeric coefficients) difference equation, showing how the one-step ahead prediction of the
output is computed from data.

Solution:

(a) Using the data vectors x = [3, 2,−1] and y = [2, 3,−1] in the least-squares estimate where
k = 1 for fitting a line:

θ̂N = R−1
N fN =

( 1

N

N∑
i=1

ϕ(i)ϕ>(i)
)−1 1

N

N∑
i=1

ϕ(i)y(i)

1

N

N∑
i=1

ϕ(i)ϕ>(i) =
1

N



N
∑N
i=1 x(i) ...

∑N
i=1 x

k(i)∑N
i=1 x(i)

∑N
i=1 x

2(i) ...
∑N
i=1 x

k+1(i)
. . .
. . .
. . .∑N

i=1 x
k(i)

∑N
i=1 x

k+1(i) ...
∑N
i=1 x

2∗k(i)

 (17)

1

N

N∑
i=1

ϕ(i)y(i) =
1

N



∑N
i=1 y(i)∑N

i=1 x(i)y(i)
.
.
.∑N

i=1 x
k(i)y(i)

 (18)

The resulting parameter estimate: θ̂N = [a, b]T , a = 0.1538, b = 0.8846 in ŷ = a+ bx = θ>ϕ.

(b) Model 4 is best, it leads to less mean squared error, it is a higher order polynomial.

(c) Model b is better, as model a tends to overfit. When there is a new previously unseen test
point, it might lead to larger error.
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(d) The plant and noise model transfer functions are

G(q) =
B(q)

A(q)
=
q−1 + 0.5q−2

1 + 0.7q−1
H(q) =

C(q)

A(q)
=

1 + 0.2q−1

1 + 0.7q−1

and the one-step ahead prediction is calculated from

C(q)ŷ(t|t− 1) = B(q)u(t) +
(
C(q)−A(q)

)
y(t),

giving the explicit expression

ŷ(t|t− 1) = −0.2ŷ(t− 1|t− 2) + u(t− 1) + 0.5u(t− 2)− 0.5y(t− 1)

4. (a) (5 points) Consider the function f : R2 7→ R2, f(x, y) =

[
x2 + y2 − 4
xy − 1

]
, for which we construct

approximate solutions to the equation f(x, y) = [0, 0]T using (full step) Newton method and the
initial guess x = [x0, y0] = [2, 0.5]. Calculate the resulting solution from applying Newton iteration
only once, i.e. [x1, y1].

(b) (2 points) Comment on the limitations of the Newton method. When would it fail to converge to
a solution?

Solution:

(a) Plugging in the following in the update formula: ∂f(x, y) =

[
2x 2y
y x

]
, det∂f(x, y) = 2x2 −

2y2, ∂f(x, y)
−1

=

[
x

2x2−2y2
−y

x2−y2
−y

2x2−2y2
x

x2−y2

]

Thus,

[
xk
yk

]
=

[
xk−1

yk−1

]
−

[ xk−1

2x2
k−1−2y2k−1

−yk−1

x2
k−1−y

2
k−1

−yk−1

2x2
k−1−2y2k−1

xk−1

2x2
k−1−2y2k−1

]
.

[
x2
k−1 + y2

k−1 − 4
xk−1yk−1 − 1

]
Beginning with x0 = 2, y0 = 0.5, x1 = 1.93, y1 = 0.51

(b) Sensitivity to initial solution and the choice of the full step vs reduced. When the Jacobian is
singular, it fails.

5. (a) (1 point) Why are IRK methods with a large number of stages not favoured in practice?

(b) (1 point) Why are high-order explicit RK methods often not the optimal choice?

(c) (1 point) Consider a Runge-Kutta scheme for integration of an ODE ẋ = f(x,u), defined by the
following Butcher array:

0 0 0
3/4 3/4 0

1/3 2/3

Is the RK scheme above explicit or implicit? How many stages are there?

(d) (1 point) For the RK scheme above, write the equations describing an update of the solution se-
quence {xk}.

(e) (1 point) For the RK scheme above, determine the stability function.

(f) (1 point) For the RK scheme above, is the scheme A-stable?
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Solution:

(a) IRK methods suffer from the complexity of factorizing the Jacobian matrices involved in the
Newton method underlying the integration scheme. A large number of stages provides a very
high order, but requires also a heavy linear algebra. The trade off between having a high order
and taking fewer steps, or having a lower order but taking more steps is not straightforward,
but it tends to favor fairly low order methods.

(b) Up to order o = 4, ERK methods require s = o stages, hence s = o evaluations of the model
equations. Each extra function evaluation readily delivers an extra order of accuracy, and allows
for reducing the total number of function evaluation required. This trend is broken for o > 4.
At higher orders, the required number of stages (and hence the number of function evaluations)
progresses faster than o. Then the overall computational cost of obtaining a given accuracy
tends to not improve (or even increase) for higher orders.

(c) The RK scheme is explicit and has 2 stages.

(d)

K1 = f (xk,u(tk))

K2 = f
(
xk +

3∆t

4
·K1,u(tk +

3∆t

4
)
)

xk+1 = xk +
∆t

3
K1 +

2∆t

3
K2

(e) Denoting the Butcher array as
c A

bT

the stability function is given by R(µ) = 1+µbT (I−µA)−11, where µ = λ∆t and 1 is a column
vector with all entries equal to 1. Thus:

R(µ) = 1 + µ
[
1/3 2/3

] [ 1 0
−3/4µ 1

]−1 [
1
1

]
= 1 + µ+ µ2/2

(f) Since |R(µ)| increases for large |µ|, the scheme is not A-stable (this is true for all explicit RK
schemes).



Modelling and Simulation ESS101 Page 9 of 11

Appendix: some possibly useful formula

• Lagrange mechanics is built on the equations:

d

dt

∂L
∂q̇
− ∂L
∂q

= Q, L (q, q̇, z) = T − V − z>C, C = 0, 〈δq, Q〉 = δW, ∀ δq (19)

The kinetic and potential energy of a point mass are given by:

T =
1

2
mṗ>ṗ, V = mgp3 (20)

respectively, where p ∈ R3 is the position of the mass in a cartesian reference frame having the
third coordinate as the vertical axis pointing up. The generalized forces are identical to the external
forces applied to a point mass if the position of that point is expressed in cartesian coordinates in the
generalized coordinates q.

• In the case T = 1
2mq̇>W q̇ with W constant V = V (q) and C = C (q), the Lagrange equations simplify

to the dynamics in the semi-explicit index-3 DAE form:

ṗ = v (21a)

W v̇ +
∂C

∂q

>
z = Q− ∂V

∂q

>
(21b)

0 = C (q) (21c)

• The Implicit Function Theorem (IFT) guarantees that a nonlinear set of equations

r (y, z) = 0 (22)

“can be solved” in terms of z for a given y iff the Jacobian ∂r(y,z)
∂z is full rank at the solution. More

specifically, it guarantees that there is a function φ (y) such that

r (y, φ (y)) = 0 (23)

holds in the neighborhood of the point y where the Jacobian is evaluated. Furthermore, the IFT
specifies that:

∂z

∂y
= −∂r

∂z

−1 ∂r

∂y
(24)

• For solving a problem r (x) = 0, Newton iterates:

x← x− α ∂r
∂x

−1

r (25)

until r (x) ≈ 0 where α ∈ [0, 1]

• Runge-Kutta methods are described by:

c1 a11 . . . a1s

...
...

...
cs as1 . . . ass

b1 . . . bs

Kj = f

(
xk + ∆t

s∑
i=1

ajiKi, u (tk + cj∆t)

)
, j = 1, . . . , s (26a)

xk+1 = xk + ∆t

s∑
i=1

biKi (26b)

• For ERK methods, the relationship between the (minimum) number of stages s to the order o is given
by:
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s 1 2 3 4 6 7 9 11 . . .

o 1 2 3 4 5 6 7 8 . . .

Table 1: Stage to order of ERK methods

• Collocation methods use:

ẋ(tk + ∆t · τ) ≈ ˙̂x(tk + ∆t · τ) =

s∑
i=1

Ki`i(τ), τ ∈ [0, 1] (27)

x(tk + ∆t · τ) ≈ x̂(tk + ∆t · τ) = xk + ∆t

s∑
i=1

KiLi(τ) (28)

where the Lagrange polynomials are given by:

`i(τ) =

s∏
j=1,j 6=i

τ − τj
τi − τj

, and Li(τ) =

∫ τ

0

`i(ξ)dξ (29)

The Lagrange polynomials satisfy the conditions of

Orthogonality:

∫ 1

0

`i(τ)`j(τ) dτ = 0 for i 6= j (30a)

Punctuality: `i(τj) =

{
1 if j = i
0 if j 6= i

(30b)

and enforce the collocation equations (for j = 1, . . . , s):

˙̂x(tk + ∆t · τj) = f (x̂(tk + ∆t · τj), u (tk + ∆t · τj)) , in the explicit ODE case (31a)

F
(

˙̂x(tk + ∆t · τj), x̂(tk + ∆t · τj), u (tk + ∆t · τj)
)

= 0, in the implicit ODE case (31b)

F
(

˙̂x(tk + ∆t · τj), ẑj , x̂(tk + ∆t · τj), u (tk + ∆t · τj)
)

= 0, in the fully-implicit DAE case (31c)

• Gauss-Legendre collocation methods select the set of points τ1,...,s as the zeros of the (shifted) Legrendre
polynomial:

Ps (τ) =
1

s!

ds

dτs

[(
τ2 − τ

)s]
(32)

They achieve the order ‖xN − x (tf)‖ = O
(
∆t2s

)
.

• Maximum-likelihood estimation is based on

max
θ

P [ek = yk − ŷk for k = 1, . . . , N |θ] (33)

If the noise sequence is uncorrelated, then

P [ek = yk − ŷk for k = 0, . . . , N |θ] =

N∏
k=1

P [ek = yk − ŷk |θ ] (34)

• The solution of a linear least-squares problem

θ̂ = arg min
θ

1

2
‖Aθ − y‖2Σ−1

e
(35)
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reads as:

θ̂ =
(
A>Σ−1

e A
)−1

A>Σ−1
e y (36)

and the covariance of the parameter estimation based is given by the formula:

Σθ̂ =
(
A>Σ−1

e A
)−1

(37)

• In system identification, given the a plant G(z) and a noise H(z) model description, the one-step-ahead
predictor ŷ(k|k − 1) can be retrieved with

H(z)ŷ(z) = G(z)u(z) + (H(z)− 1)y(z) (38)

• The Gauss-Newton approximation in an optimization problem

min
x

J (x) =
1

2
‖R (x)‖2 (39)

uses the approximation:

∂2J

∂x2
≈ ∂R

∂x

> ∂R

∂x
(40)

• The solution to an LTI system ẋ = Ax +Bu is given by:

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ (41)

and the transformation state-space to transfer function is given by:

G(s) = C (sI −A)
−1
B +D (42)

• A =

[
a b
c d

]
, det(A) = ad− bc

• A =

 a b c
d e f
g h i

, det(A) = a.det(

[
e f
h i

]
)− b.det(

[
d f
g i

]
) + c.det(

[
d e
g h

]
)

• A =

[
a b
c d

]
, det(A) = ad− bc, A−1 = 1

det(A)

[
d − b
−c a

]
• α = xTAx, where A is a symmetric matrix and x is n × 1, A is n × n, and A does not depend on x,

then, ∂α
∂x = 2xTA.


