
Modelling and Simulation ESS101
5 January 2022 (Re-exam)

This exam contains 11 pages (including this cover page) and 5 problems.

You are allowed to use the following material:

• Modelling And Simulation, Lecture notes for the Chalmers course ESS101, by S. Gros (with brief
annotations, but cannot contain solutions to the exercises or previous exams)

• Mathematics Handbook (Beta)

• Physics Handbook

• Chalmers approved calculator

• Formula sheet, appended to the exam.

– Organize your work in a reasonably neat and coherent
way. Work scattered all over the page without a clear
ordering may receive less credit.

– Mysterious or unsupported answers will not receive
credit, but an incorrect answer supported by substan-
tially correct calculations and explanations will receive
partial credit.

– None of the proposed questions require extremely long
computations. If you get caught in endless algebra, you
have probably missed the simple way of doing it.

– The passing grade will be given at 20 points, grade 4 at
27 and the top grade at 34 points.

Best of luck to all !!

Examiner: Yasemin Bekiroglu, +46 70 148 72 71
Teaching Assistant: Ahmet Ercan Tekden, +46 72 371 03 10
Lecturer: Hadi Hajieghrary, +46 72 177 90 46

Problem Points Score

1 10

2 11

3 9

4 6

5 4

Total: 40
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1. (a) (10 points) We will consider the ring problem illustrated in Fig. 1. A massless ring-shaped rail is
rotating around its vertical axis, subject to a torque T . A mass m slides along the ring without
friction. Choose a set of coordinates to describe the system, and write the model equations of the
system (using the Lagrange function and assembling the Lagrange equations).

Hint: let us consider a point p ∈ R3 on the ring. The work δW produced by T for a displacement
δp is then given by:

δW =
1

R2
det
([

T p δp
])

(1)

where T =
[

0 0 T
]>

(also det denotes determinant). You may want to use this observation
or not, depending on how you decide to approach the problem.

Figure 1: Illustration of the ring problem. The ring has a negligible inertia, a radius R, (the ball to be at
distance R from the origin), and is subject to a torque T on its vertical rotation axis (dashed-dotted line).
The mass (black ball) slides without friction on the ring.

Solution:

(a) Let us pick

q = p (2)

as our generalized coordinates, where p ∈ R3 is the position of the mass in the cartesian
reference frame attached to the axis of the ring (vertical axis aligned with the vertical ring axis,
origin at the center of the ring). The kinetic and potential energies read as:

T =
1

2
mṗ>ṗ, V = mgp3 (3)

and we use the constraints:

c =
1

2

(
p>p−R2

)
= 0 (4)
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that imposes the ball to be at distance R from the origin. We then write the Lagrange function:

L =
1

2
mṗ>ṗ−mgp3 − z

1

2

(
p>p−R2

)
(5)

where z ∈ R. We can then trivially compute:

∂L
∂q

>
= −

 0
0
mg

− zp, ∂L
∂q̇

>
= mṗ,

d

dt

∂L
∂q̇

>
= mp̈ (6)

and assemble the Lagrange equations:

d

dt

∂L
∂q̇

>
− ∂L
∂q

>
= mp̈ +

 0
0
mg

+ zp = Q (7a)

1

2

(
p>p−R2

)
= 0 (7b)

We finally compute the generalized forces Q. Using (1), we have:

δW =
T

R2
(δp2p1 − δp1p2) (8)

such that

Q =
T

R2

 −p2

p1

0

 (9)

2. (a) (5 points) Consider the following rotating parts with moments of inertia J1 and J2.

The two parts are joined, resulting in the equations

J1ω̇1 = M1 +M2 (10a)

J2ω̇2 = M3 +M4 (10b)

M2 = −M3 (10c)

ω1 = ω2, (10d)

where M1 and M4 are considered to be inputs.
What is the index of this system?

(b) (6 points) Consider the following DAE, where u is the input:

ẋ1 = x2 (11a)

ẋ2 = −z1 + u (11b)

x1 = z1 + z2 (11c)

z1 = z2 · |z2| (11d)

1. What is the differential index of (11)?
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2. Transform (11) into an ODE (ordinary differential equation).

Solution:

(a) From the two first equations of (10), ω̇1 and ω̇2 can be solved for. Differentiating the third and
fourth equations give

Ṁ2 = −Ṁ3 (12)

ω̇1 = ω̇2 (13)

and inserting the expressions for ω̇1 and ω̇2 results in

Ṁ2 = −Ṁ3 (14)

(M1 +M2)/J1 = (M3 +M4)/J2 (15)

Differentiation of the latter of these two equations then gives

Ṁ2 = −Ṁ3 (16)

(Ṁ1 + Ṁ2)/J1 = (Ṁ3 + Ṁ4)/J2, (17)

from which we can solve for Ṁ1 and Ṁ2 (remember that M1 and M4 are inputs). Hence, the
system has index 2.

(b) 1. We observe that (11) is a semi-explicit DAE with

g (x, z, u) =

[
x1 − (z1 + z2)
z1 − z2 · |z2|

]
. (18)

By noting that the derivative of z2 · |z2| can be computed by considering the function for
positive and negative z2 separately, we have

∂g

∂z
=

[
−1 −1
1 −2|z2|

]
. (19)

Since the determinant is nonzero for all z2, the differential index is equal to 1.

2. Since the index is 1, it should be sufficient to differentiate the algebraic equations once to
obtain an ODE. Indeed, we get

ẋ1 = ż1 + ż2 (20)

ż1 = 2|z2|ż2, (21)

which can be solved for ż1 and ż2:

ż1 =
2|z2|x2

1 + 2|z2|
(22)

ż2 =
x2

1 + 2|z2|
(23)
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Figure 2: Linear regression examples based on least squares.

The complete ODE is thus

ẋ1 = x2 (24)

ẋ2 = −z1 + u (25)

ż1 =
2|z2|x2

1 + 2|z2|
(26)

ż2 =
x2

1 + 2|z2|
(27)

3. (a) (4 points) Consider the curve fitting results in Figure 2a-d. Comment on which curve fitting is
better when Figure 2a and Figure 2b is compared. How is better fitting determined? What is
different in the curve fitting approach in Figure 2c, what mainly changes in the fitted curve models
from Figure 2a to Figure 2c? Comment on the quality of the model fitting in Figure 2d. Is it an
acceptable fitting result? What could be potential problems and how they can be resolved?

(b) (2 points) Consider the ARX model:

yk + a1yk−1 + a2yk−2 = b0uk + ek (28)

where ek is the additive noise and the associated data y0,...,N and u0,...,N obtained from applying
the input sequence u0,...,N to the real system, started with yk<0 = 0. Write out the one-step ahead

predictor ŷk in the form of ŷk = θTϕ, where θ is the parameter vector and ϕ is the regression
vector and define the entries in θ and ϕ.

(c) (3 points) Consider a two-dimensional dataset {x(i), y(i)}, i = 1, ...N . Using a least squares ap-
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proach capturing the relationship between x and y,

ŷ = a+ bx+ cx2 + dx3 + fx4 = θ>ϕ,

where θ is the parameter vector and ϕ is the regression vector (holding the regressors 1, x, ...), write
out all the components in the RN and fN matrices in the least squares estimate defined as

θ̂N = R−1
N fN =

( 1

N

N∑
i=1

ϕ(i)ϕ>(i)
)−1 1

N

N∑
i=1

ϕ(i)y(i).

Solution:

(a) Model fit in Figure 2a is better, in comparison to Figure 2b, as the fitting error is less. Model fit
quality can be determined by a loss function based on the differences between the predictions
and the ground truth values. Model in Figure 2c has a higher order, it is a more complex model.
Figure 2d shows overfitting which is problematic as it leads to bad generalization performance,
i.e. model predictions on unseen data would not be of good quality. Cross-validation can help
to find a good model order to avoid overfitting.

(b) The one-step ahead predictor reads as:

ŷk = −a1yk−1 − a2yk−2 + b0uk (29)

and the mismatch between the data and the predictor is given by:

ek = ŷk − yk = −yk − a1yk−1 − a2yk−2 + b0uk = θTϕ− yk (30)

where ϕ =

 −yk−1

−yk−2

uk

, θ =

 a1

a2

b0

.

(c) The matrices are written as below where k = 4

1

N

N∑
i=1

ϕ(i)ϕ>(i) =
1

N



N
∑N
i=1 x(i) ...

∑N
i=1 x

k(i)∑N
i=1 x(i)

∑N
i=1 x

2(i) ...
∑N
i=1 x

k+1(i)
. . .
. . .
. . .∑N

i=1 x
k(i)

∑N
i=1 x

k+1(i) ...
∑N
i=1 x

2∗k(i)

 (31)

1

N

N∑
i=1

ϕ(i)y(i) =
1

N



∑N
i=1 y(i)∑N

i=1 x(i)y(i)
.
.
.∑N

i=1 x
k(i)y(i)

 (32)

4. The Newton methods aims at solving a set of equation r (x) = 0 numerically. To that end, it iterates
the recursion:

M∆x + r (x) = 0 (33a)

x← x + α∆x (33b)
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where α ∈]0, 1] is the step-size.

(a) (1 point) How should matrix M be ideally chosen?

(b) (1 point) Explain in words what condition(s) is (are) required for Newton to converge with α = 1.

(c) (2 points) Why do we need α and how should it be chosen?

(d) (2 points) The local convergence rate of an exact, full-step Newton method can be summarized as:

‖x+ − x?‖ ≤ c ‖x− x?‖2 (34)

where x? is a solution of r (x?). What is the meaning of this formula? When does it (doesn’t it)
occur?

Solution:

(a) Ideally, we ought to chose M as the Jacobian matrix ∂r
∂x . In practice, approximations are often

used.

(b) Full Newton steps are guaranteed to converge in a neighborhood of a solution only. The “size”

of that neighborhood depends on how nonlinear r (x) is, and the Jacobian ∂r(x)
∂x must be full

rank throughout this neighborhood.

(c) The step-size α allows the Newton iteration to converge even if x is not close to the solution
x?. It is typically chosen so as to ensure that

‖r (x + α∆x)‖ < ‖r (x)‖ (35)

Finding α is the role of a (small) computer code usually labelled “line-search”.

(d) This formula states that the exact, full-step Newton iteration converges quadratically to a
solution. That is, the number of accurate digits in the x is doubled at every iteration. Achieving
the quadratic contraction rate requires basically what is stated in the question, namely:

• Exact Newton steps, i.e. an exact Jacobian M = ∂r(x)
∂x is used and system (33a) is solved

to machine precision.

• Full steps are taken, i.e. α = 1 throughout the iterations.

• The quadratic convergence rate is local, i.e. it occurs in a neighborhood of the solution
x?.

5. (a) (2 points) What is the maximum order (for a given number of stages s) that an IRK method can
achieve? What one needs to do to achieve that order?

Consider the following Runge-Kutta equations for integration of an ODE ẋ = f(x,u):

K1 = f (xk,u(tk))

K2 = f
(
xk + ∆t ·K1,u(tk + ∆t)

)
xk+1 = xk +

∆t

2
(K1 + K2)

(b) (1 point) Is the RK scheme explicit or implicit? How many stages are there?

(c) (1 point) What is the Butcher array describing the scheme?
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Solution:

(a) The family of IRK methods includes the Gauss-Legendre collocation methods (this is easy to
verify from the equations provided in the appendix), which achieve an order up to 2s. That
is the maximum order that IRK methods can achieve for a given number of stages s. Gauss-
Legendre collocation schemes yield a very specific Butcher tableau (a, b, c) to be used in the
IRK scheme. The order 2s is achieved only if this specific Butcher tableau is used.

(b) The RK scheme is explicit and has 2 stages.

(c)
0 0 0
1 1 0

1/2 1/2
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Appendix: some possibly useful formula

• Lagrange mechanics is built on the equations:

d

dt

∂L
∂q̇
− ∂L
∂q

= Q, L (q, q̇, z) = T − V − z>C, C = 0, 〈δq, Q〉 = δW, ∀ δq (36)

The kinetic and potential energy of a point mass are given by:

T =
1

2
mṗ>ṗ, V = mgp3 (37)

respectively, where p ∈ R3 is the position of the mass in a cartesian reference frame having the
third coordinate as the vertical axis pointing up. The generalized forces are identical to the external
forces applied to a point mass if the position of that point is expressed in cartesian coordinates in the
generalized coordinates q.

• In the case T = 1
2mq̇>W q̇ with W constant V = V (q) and C = C (q), the Lagrange equations simplify

to the dynamics in the semi-explicit index-3 DAE form:

ṗ = v (38a)

W v̇ +
∂C

∂q

>
z = Q− ∂V

∂q

>
(38b)

0 = C (q) (38c)

• The Implicit Function Theorem (IFT) guarantees that a nonlinear set of equations

r (y, z) = 0 (39)

“can be solved” in terms of z for a given y iff the Jacobian ∂r(y,z)
∂z is full rank at the solution. More

specifically, it guarantees that there is a function φ (y) such that

r (y, φ (y)) = 0 (40)

holds in the neighborhood of the point y where the Jacobian is evaluated. Furthermore, the IFT
specifies that:

∂z

∂y
= −∂r

∂z

−1 ∂r

∂y
(41)

• For solving a problem r (x) = 0, Newton iterates:

x← x− α ∂r
∂x

−1

r (42)

until r (x) ≈ 0 where α ∈ [0, 1]

• Runge-Kutta methods are described by:

c1 a11 . . . a1s

...
...

...
cs as1 . . . ass

b1 . . . bs

Kj = f

(
xk + ∆t

s∑
i=1

ajiKi, u (tk + cj∆t)

)
, j = 1, . . . , s (43a)

xk+1 = xk + ∆t

s∑
i=1

biKi (43b)

• For ERK methods, the relationship between the (minimum) number of stages s to the order o is given
by:
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s 1 2 3 4 6 7 9 11 . . .

o 1 2 3 4 5 6 7 8 . . .

Table 1: Stage to order of ERK methods

• Collocation methods use:

ẋ(tk + ∆t · τ) ≈ ˙̂x(tk + ∆t · τ) =

s∑
i=1

Ki`i(τ), τ ∈ [0, 1] (44)

x(tk + ∆t · τ) ≈ x̂(tk + ∆t · τ) = xk + ∆t

s∑
i=1

KiLi(τ) (45)

where the Lagrange polynomials are given by:

`i(τ) =

s∏
j=1,j 6=i

τ − τj
τi − τj

, and Li(τ) =

∫ τ

0

`i(ξ)dξ (46)

The Lagrange polynomials satisfy the conditions of

Orthogonality:

∫ 1

0

`i(τ)`j(τ) dτ = 0 for i 6= j (47a)

Punctuality: `i(τj) =

{
1 if j = i
0 if j 6= i

(47b)

and enforce the collocation equations (for j = 1, . . . , s):

˙̂x(tk + ∆t · τj) = f (x̂(tk + ∆t · τj), u (tk + ∆t · τj)) , in the explicit ODE case (48a)

F
(

˙̂x(tk + ∆t · τj), x̂(tk + ∆t · τj), u (tk + ∆t · τj)
)

= 0, in the implicit ODE case (48b)

F
(

˙̂x(tk + ∆t · τj), ẑj , x̂(tk + ∆t · τj), u (tk + ∆t · τj)
)

= 0, in the fully-implicit DAE case (48c)

• Gauss-Legendre collocation methods select the set of points τ1,...,s as the zeros of the (shifted) Legrendre
polynomial:

Ps (τ) =
1

s!

ds

dτs

[(
τ2 − τ

)s]
(49)

They achieve the order ‖xN − x (tf)‖ = O
(
∆t2s

)
.

• Maximum-likelihood estimation is based on

max
θ

P [ek = yk − ŷk for k = 1, . . . , N |θ] (50)

If the noise sequence is uncorrelated, then

P [ek = yk − ŷk for k = 0, . . . , N |θ] =

N∏
k=1

P [ek = yk − ŷk |θ ] (51)

• The solution of a linear least-squares problem

θ̂ = arg min
θ

1

2
‖Aθ − y‖2Σ−1

e
(52)
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reads as:

θ̂ =
(
A>Σ−1

e A
)−1

A>Σ−1
e y (53)

and the covariance of the parameter estimation based is given by the formula:

Σθ̂ =
(
A>Σ−1

e A
)−1

(54)

• In system identification, given the a plant G(z) and a noise H(z) model description, the one-step-ahead
predictor ŷ(k|k − 1) can be retrieved with

H(z)ŷ(z) = G(z)u(z) + (H(z)− 1)y(z) (55)

• The Gauss-Newton approximation in an optimization problem

min
x

J (x) =
1

2
‖R (x)‖2 (56)

uses the approximation:

∂2J

∂x2
≈ ∂R

∂x

> ∂R

∂x
(57)

• The solution to an LTI system ẋ = Ax +Bu is given by:

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ (58)

and the transformation state-space to transfer function is given by:

G(s) = C (sI −A)
−1
B +D (59)

• A =

[
a b
c d

]
, det(A) = ad− bc

• A =

 a b c
d e f
g h i

, det(A) = a.det(

[
e f
h i

]
)− b.det(

[
d f
g i

]
) + c.det(

[
d e
g h

]
)

• α = xTAx, where A is a symmetric matrix and x is n × 1, A is n × n, and A does not depend on x,
then, ∂α

∂x = 2xTA.


