
Chalmers University of Technology and Gothenburg University

Operating Systems
EDA093, DIT 401

Exam 2025-01-07

Date, Time: Tuesday 2025/01/07, 08.30-12.30

Course Responsible:
Vincenzo Gulisano (031 772 61 47)

Auxiliary material: You may have with you
- An English-Swedish, Swedish-English dictionary.
- No other books, notes, calculators, etc.

Grade-scale (“Betygsgränser”):
CTH: 3:a 30-39 p, 4:a 40-49 p, 5:a 50-60 p
GU: Godkänd 30-49p, Väl godkänd 50-60 p

Exam review (“Granskningstid”):
Will be announced after the exam.

Instructions

• Do not forget to write your personal number, if you are a GU or CTH
student and at which program (“linje”).

• Start answering each assignment on a new page; number the pages and
use only one side of each sheet of paper.

• Write in a clear manner and motivate (explain, justify) your answers.
If it is not clear what is written, your answer will be considered wrong. If
it is not explained/justified, even a correct answer will get significantly
lower (possibly zero) marking.

• Please make an effort to have nice calligraphy!

• If you make any assumptions in answering any item, do not forget to
clearly state what you assume.

• Answer questions in English, if possible. If you have a large difficulty
with that and you think that your grade can be affected, feel free to write
in Swedish.

Good luck !!!!



1. (6 p) Would it make sense for an attacker to exploit a buffer overflow in the
user rather than in the kernel code? If you believe the answer is yes, provide
an example.

[Answer: Yes, depending on the attacker’s goals and the system’s security
measures, it can make sense for an attacker to exploit a buffer overflow in
the user code rather than in the kernel code. The kernel code is often well-
protected. However, user code may have fewer protections and still provide
valuable opportunities for attackers.

Consider a buffer overflow in a file management application running in the
user space. By exploiting the vulnerability, an attacker injects malicious code
that deletes specific files belonging to the user, such as important documents
or configuration files.]

2. (6 p) True/False Questions – Kernel Threads and Kernel Mode (provide a
short explanation about your True/False answer):

(a) Kernel threads always execute in kernel mode.
[Answer: Answer: False. Kernel threads can execute in either kernel
mode or user mode depending on their specific task.]

(b) Switching between kernel threads of the same process is faster than
switching between processes.
[Answer: Answer: True. Context switching between kernel threads of
the same process is faster because they share the same address space.]

(c) User-level threads are managed by the operating system kernel, while
kernel threads are managed by the user-level threading library.
[Answer: Answer: False. Kernel threads are managed by the operating
system kernel, while user-level threads are managed by the user-level
threading library.]

(d) When a process with multiple kernel threads makes a blocking system
call, only the thread making the call is blocked.
[Answer: Answer: True. In a system supporting kernel threads, other
threads of the process can continue executing.]

(e) Kernel threads are always associated with a user process.
[Answer: Answer: False. Kernel threads can exist independently of user
processes (e.g., threads for handling I/O or other kernel-level tasks).]

(f) Kernel mode is always required for switching between kernel threads.
[Answer: Answer: True. Switching between kernel threads involves
accessing kernel-level resources and requires kernel mode.]

3. (6 p) In virtual memory, if the page size 2n increases, does the internal frag-
mentation necessarily increase/stay the same, or can it also decrease? Moti-
vate your answer.

[Answer: only stay the same or increase. Some visual explanation follows:]

1



2



4. (6 p) The manual of vfork() states:

”The vfork() function has the same effect as fork(2), except that
the behavior is undefined if the process created by vfork() either
modifies any data other than a variable of type pid t used to store
the return value from vfork(), or returns from the function in which
vfork() was called, or calls any other function before successfully
calling exit(2) or one of the exec(3) family of functions.”

Why?

[Answer: The vfork() function is designed to create a new process in a
highly efficient manner by sharing the address space of the parent process with
the child process, rather than copying it as fork() does. This optimization
cannot guarantee a certain behavior for the parent if the child “messes” with
the parent’s memory. That is because, unlike fork(), the child process does
not receive a separate copy of the parent’s address space. Instead, the parent
and child processes share the same memory. If the child modifies any data
in this shared memory, it can lead to unpredictable behavior or corrupt the
parent’s state. In other words, the purpose of vfork() is to allow the child to
immediately call exec() or exit(). Any other action, such as returning from
the function or calling other functions, risks modifying the shared memory or
stack, leading to undefined behavior.]

5. (6 p) Does Direct Memory Access reduce the number of interrupts in a com-
puter system? Explain why or why not in detail.

[Answer: Yes, Direct Memory Access (DMA) reduces the number of inter-
rupts in a computer system. In a system without DMA, the CPU is responsible

3



for transferring data between memory and I/O devices. This often requires
multiple interrupts. With DMA, the CPU delegates the data transfer task to
the DMA controller. The DMA controller handles the entire transfer between
memory and the I/O device without CPU intervention. Instead of multi-
ple interrupts for each small transfer, the DMA controller generates a single
interrupt to notify the CPU when the entire transfer is complete. This signif-
icantly reduces the number of interrupts, particularly for large data transfers,
and minimizes CPU overhead allowing the CPU to focus on other tasks.]

6. (6 p) Write C code (simplified) that creates N threads and distributes them
to M processes in a round-robin fashion (i.e., if N = 10 and M = 3, threads
1, 4, 7, . . . belong to process 1, threads 2, 5, 8, . . . to process 2, and so on).
All threads belonging to each process should be able to exchange information
through a shared variable.

[Answer: Answer:]

1 #include ...

2

3 void *thread_function(void *arg) {...}

4

5 int shared_var;

6

7 int main(int argc , char *argv []) {

8 if (argc != 3) {

9 print error ...

10 }

11

12 int N = atoi(argv [1]); // Number of threads

13 int M = atoi(argv [2]); // Number of processes

14

15 pid_t pids[M];

16

17 for (int i = 0; i < M; i++) {

18 pids[i] = fork();

19 if (pids[i] == 0) {

20 // Child process

21 pthread_t threads[N / M + 1];

22 int thread_count = 0;

23

24 // Create threads for this process

25 for (int j = 0; j < N; j++) {

26 if (j % M == i) {

27 pthread_create (& threads[thread_count],

NULL , thread_function , shared_data)

;

28 thread_count ++;

29 }

30 }

31

32 // Wait for threads to finish

33 for (int j = 0; j < thread_count; j++) {

34 pthread_join(threads[j], NULL);

35 }

36

37 exit(EXIT_SUCCESS);

38 }

39 }

40

4



41 // Parent process waits for all child processes

42 for (int i = 0; i < M; i++) {

43 waitpid(pids[i], NULL , 0);

44 }

45

46 return;

47 }

7. (6 p) Upon which events can the OS scheduler take scheduling decisions if
non-preemptive scheduling is to be enforced?

[Answer: In a non-preemptive scheduling system, the operating system sched-
uler can make scheduling decisions only at specific points where the currently
running process voluntarily releases the CPU. These events include: process
creation, process termination, when a process blocks, when it issues a wait
request, for instance upon an I/O request.]

8. (6 p) Show how the dining philosophers problem can be solved by breaking
the circular wait condition.

[Answer: Check slide 20 in Lecture 6.]

9. (6 p) Consider the following six processes, each with a priority (lower number
indicates higher priority), a CPU burst time (in milliseconds), and an arrival
time (in milliseconds):

Process Priority Burst Time (ms) Arrival Time (ms)

P1 2 10 0
P2 1 5 1
P3 3 8 2
P4 2 6 3
P5 1 4 5
P6 3 9 6

Assume the CPU uses a round-robin scheduling algorithm with a time quan-
tum of 3 milliseconds. However, at each quantum, the process with the high-
est priority (lowest priority number) is selected for execution. Compute the
turnaround time for each process.

[Answer: Answer:]

5



10. (6 p) Consider the following C code:

1 #include ...

2

3 int main() {

4 pid_t pid = fork();

5

6 if (pid == 0) {

7 return 0;

8 } else if (pid > 0) {

9 sleep (10);

10 } else {

11 return 1;

12 }

13

14 return 0;

15 }

Does this program lead to a zombie process or an orphan process? Justify your
answer (assume that the sleep(10) instruction implies the process entering
the branch for which pid==0 holds true has plenty of time to run its code).

[Answer: This program creates a zombie process. A zombie process occurs
when a child terminates but the parent has not yet collected its exit status.
When the child process terminates (indicated by ‘return 0‘ in the child block),
it remains in the process table as a zombie until its parent explicitly reads its
exit status using the ‘wait()‘ or ‘waitpid()‘ system call. The parent process
does not call ‘wait()‘ immediately; instead, it sleeps for 10 seconds. During
this time, the child process remains in the zombie state, occupying a slot in
the process table. It is not an orphan process because the parent process
is still running and has not terminated. An orphan process occurs when a
child process continues execution after its parent has terminated, and it gets
adopted by the ‘init‘ process.]

6


