DATO055- Object Oriented Applications
Exam date 18" MAR 2025

Examiner: Dr. Yehia Abd Alrahman
Phone: 031-772 60 54

I will visit the exam hall at approximately one hour after the start, and one hour before the
end.

Examination Rules:
The exam is 60 points and graded as U (0-23)/ 3 (24-35)/ 4 (36-47)/ 5 (48-60) (fail, pass, pass
with merits, pass with distinction).

The exam consists of two parts:

Part A (questions 1-6) consists of questions covering broad knowledge expected to have been
learned.

Part B (questions 7-8) covers advanced questions

Extra Aids: No extra aids allowed.

e Answers must be given in English.

e Use page numbering on your answer sheets.

e Start every question on a fresh page.

e Write clearly; unreadable = wrong!

e Unnecessarily complicated solutions are considered incorrect.

e Read all parts of the exam before starting to answer the first question.

e Indicate clearly when you make assumptions that are not given in the question.
e Insignificant syntax errors and similar will not be penalised.

Good luck!

PART A — Basic Knowledge

INVOICE

Sam's Small Appliances
100 Main Street
Anytown, CA 98765

Description Price Qty Total
Toaster 29.95 3 89.85
Hair dryer 24,95 1 24.95
Car vacuum 19.99 2 39.98

AMOUNT DUE: $154.78

Fig.1: Invoice Form

Question 1 — Object Oriented Design 6 Points
Use the OOD approach to design a program to print out an invoice as in Fig.1 above. The program simply prints
the billing address, all line items, and the amount due. Each line item contains the description and unit price of a
product, the quantity ordered, and the total price.

Answer the following questions following the OO approach:

1. Given the description above, discover the names of the required classes in your application. (Note:
some class names might not exist in the description, but maybe inferred)

Ans: Invoice, Address, Lineltem, Product

2. Provide (final) CRC cards for each class you discover showing its responsibilities and collaborators.

Ans:

Invoice Product LineItem
format the invoice Address get description format the item Product
add a product and quantity LineItem get unit price get total price

Product

Address

format the address

3. Plot the class diagram for your design where you show all kinds of dependencies among the different
classes.

AnNs:

e————————— Invoice < Address

:

Product —_— LineItem

Question 2 — Object Oriented Design 6 Points
ATMViewer T T L Lt
v v v
ATMF rame = ATM <>—:l Bank
Keypad 1 Customer
.
BankAccount

Fig.2: ATM Application
Consider the class diagram in Fig. 2 and answer the following questions:

a) The ATMViewer class is the driver of the ATM application that creates ATM, Bank, and ATMFrame
objects and relates them according to the class diagram. You are required to generate stub classes
that conform to Fig. 2. (Hint: you are free to use the names of instance variables in your stub classes)

Ans:

public class Customer

{
private BankAccount checkingAccount;
private BankAccount savingsAccount;
}
public class BankAccount
{
}

public class KeyPad

{
}
public class Bank
{
private List<Customer> customers;
}
public class ATM
{
private Customer currentCustomer;
private BankAccount currentAccount;
private Bank theBank;
}
public class ATMFrame
{
private ATM theATM;
private KeyPad pad;
}
public class ATMViewer
{
Bank theBank = new Bank();
ATM theATM = new ATM(theBank);
ATMFrame frame = new ATMFrame(theATM);
}

b) Consider the relation between the classes Bank and Customer, explain this relation and discuss if it is

conceptually appropriate (if not, suggest an alternative while preserving the actual generated code).
Ans: Customer can be changed from aggregation to association. The reason is that a bank does not really
aggregate clients, but rather clients can be associated to different banks. That is why association is more
appropriate.

Question 3 — Coupling and Cohesion 6 Points
Consider the class diagram below for a budget report that manipulates a database. Answer the following
questions:

MySOLDatabase

BudgetReport
- database
+ insert()
+ open(date) + update()
+ save() + delete()

a) Discuss whether the classes above feature cohesiveness? If not refactor the design.
Ans: it is cohesive.

b) Discuss whether the classes above suffer from tight coupling? If yes, motive your answer by identifying
a problem that may appear in the future and refactor your design accordingly.

Ans: there is a tight coupling between the BudgetReport and the implementation MySQL Database. Class
must only depend on abstraction. If we change the type of database in the future the BudgetReport needs to
be changed as well. It can be refactored as follows:

High level

:F Abstraction 1:
! 1
! BudgetReport «interface» i
! Database {
! |-database :
! +insert() !
| |* open(date) + update() |
|+ savel) + delete() i

[I{‘_‘_‘_'_'_'_'_'_'_‘ff_‘_‘_‘i_______l

1l MysQL MongoDB | |

1|+ insert() + insert() ;

i |+ update() + update() !

Low level | |+ deleteq) +delete) | |

Question 4 — Model-View-Controller 6 Points

Consider an MVC CLI application according to the following requirements: The user types a single line
message and aims to send it to all potential listeners (use MessageL istener as class name). The input of the CLI
is read by listening to the system standard input. All messages are stored in an object of the class
MessageQueue. When the user types the message and hits Enter, the message is stored in the queue and is
autonomously propagated to all listeners. Listeners pick up messages and display them on the system standard
output.

1. Identify the Model, the View, and the Controller in this application.
Model: MessageQueue
View: MessageL.istener
Controller: a class that run the app. That is, it observes the standard input, query the model and mediate
the interaction with MessageL istners.

2. To permit autonomous delivery of the message for all listeners without asking, what design pattern is
appropriate to realize this MVC architecture?

Solution: Observer design pattern

3. Plot the class diagram of your concrete design.

Solution:
«Interface» «Interface»
Observable Observer
+addObserver(Observer obs) +update(Observable mesgQueue)
+removeObserver(Observer obs)
+notifyObservers(Observer obs) 7
+getMessage() 0
]
AI |
]
]
]
]
! I
]
]
]
: I
Controller «Model» Vi
«View»
-msg: MessageQueue MessageQueue

MessageListener
userld: String

- observers: Observer|]
- msg: Queue<String>
+ add() + update(Observable messageQueue)

+ runf)

Question 5 —The Solid Principles 6 Points
As shown in the code snippets below, we consider a group of students taking an examination. We need to store
the name, registration number, mark, and department (currently Science or Arts). We need to display the result
of a student and evaluate their distinction. In Science department (e.g., Physics, CS), distinction is granted if
mark is greater than 80 while in Arts (e.g., History, English), distinction is granted if mark is greater than 70.
Observe the code and answer the following questions:

class Student { class DistinctionDecider {
String name; List<String> science = Arrays.asList("Comp.Sc.","Physics")

String regNumber; List<String> arts = Arrays.asList("History","English");

Btringpcepattmsnty public void evaluateDistinction(Student student) {
double score;

Piubiic) student (Btring namey String teghumber: if (science.contains(student.department)) {
double score, String dept) { if (student.score > 80) {

this.name = name; System.out.println(student.regNumber+" has received
this.regNumber = regNumber; a distinction in science.")
this.score = score;

this.department = dept;

})
@override if (arts.contains(student.department)) {
public String toString() { if (student.score > 70) {
b, (MALEEE s BN © System.out.println(student.regNumber+" has received a
"\nReg Number: " + regNumber +

" » distinction in arts.");
\nDept:" + department +

"\nMarks:" + score + }

"\nXkkkkkx") .)

class Client {

public static void main(String[] args) {

List<Student> enrolledStudents = enrollStudents{() ;

// Display all results.

System.out.println ("===Results:===");

for (Student student:enrolledStudents) {

System.out.println (student) ;

}

System.out.println ("===Distinctions:===");

DistinctionDecider distinctionDecider = new

DistinctionDecider () ;

// Evaluate distinctions.

for (Student student:enrolledStudents) {
distinctionDecider.evaluateDistinction (student) ;

1. Consider the Client class (the driver of the application) and check whether the code above satisfies the
SRP and OCP principles. What about its cyclomatic complexity?

Ans: SRP is preserved, but OCP is not preserved. If a new department is introduced then the distinction
decider class must be changed. This would also affect the cyclomatic complexity of this class as well. A
new if statement would be added per department which would increase the cyclomatic complexity.

2. If the code violates any of the principles, you must refactor the code so that it satisfies both principles.
Note, you can either refactor the code or plot the class diagram of the refactored code (Your choice).

Ans: See below (a similar class of ArtsStudent is also required for ScienceStudent. ArtDistinctionDecider is
similar to ScienceDistinctionDecider)

abstract class Student {
String name;
String regNumber;
double score; interface DistinctionDecider {
Stolngicepariven.s void evaluateDistinction(Student student);
public Student(String name,
String regNumber,)

double score) {

this.name = name;

Phis: reulimber = FeoNaRbGr T class ScienceDistinctionDecider implements DistinctionDecider{

this.score = score; @override
} public void evaluateDistinction(Student student) ({
public Stringtostringf) if (student.score > 80) {
return ("Name: " + name + .
“\nReg Number: *+: regNumber + System.out.println(student.regNumber+" has
“\nDept:" + department + received a distinction in science.");
“\nMarks:" + score + }
T\naEeEERR")
}
}
} }

public class ArtsStudent extends Student{
public ArtsStudent(String name,
String regNumber,
double score,
String dept) {
super (name, regNumber, score);

this.department = dept;

Question 6 — The Solid Principles 6 Points
Consider the following class diagram and answer the following questions. Note that the BasicPrinter class can
only print a document, and thus throws an exception when sendFax() is called.

o G 3 «Interface»
@Printer

| ® - printDocument(|
.| #® - sendFax()

..... R IITT ST R
e BT I g $ A2 : : £
& AdvancedPrinter®]. - :, SBasicPrinter
‘| # + printDocument()| 71| # + printDocument()
@ + sendFax() 0 |® + sendFax()

1. What principles does this class diagram violate? Explain.

Ans: ISP because the interface is bloated. SRP because a printer does not send a fax. LSP because we cannot
use the interface Printer in place of a BasicPrinter. This is because sendFax() throws an exception if called
on BasicPrinter.

2. When | write this code:

Printer p = new BasicPrinter();
p.sendFax () ;

Iget the foIIowing error | Exception in thread "main" java.lang.UnsupportedOperationException

How should I refactor the design so that this above code does not through an exception?
(Note: providing an empty implementation for sendFax() for BasicPrinter is wrong)

Ans: This is because the code does not support LSP and thus we need to refactor as follows:

// Printer.java // AdvancedPrinter.java
interface Printer { class AdvancedPrinter implements Printer,FaxDevice {
void printDocument(); @override
} public void printDocument() {
// FaxDevice.java System.out.println("The advanced printer prints a docume
interface FaxDevice { }
void sendFax(); @override

}

// BasicPrinter.java

public void sendFax() {

System.out.println("The advanced printer sends a fax.");
class BasicPrinter implements Printer {)

@override
public void printDocument() {

System.out.println("The basic printer prints a document
}

PART B — Advanced Questions

Question 7 — Design Patterns 12 Points

Consider the following representation of a file system. A directory can contain either a simple file (e.g., f1) ora
mix of simple files and subdirectories:

A directory is a
file that contains
root other files.
£1 subdir1 subdir2 subdir3

f2 f3 f4 f5 fé f7 f8

A file has a size, a name and must support the following methods: getSize() to return its size, getName() to
return its name, and print() to print out its size and name. A directory must also be able to store a set of files and
subdirectories, and in addition to the properties and methods of a file, it must supply methods to add and remove
either a file or a subdirectory. Moreover, when a directory calls its print method, it should print out the details of
each file or directory it contains. Note: you are not required to write any code for this question, just the class
diagram with the mentioned details. Answer the following:

1. Pick an appropriate design pattern to represent this file system.
Ans: Composite Design Pattern

2. Plot the class diagram.

AnNs:

<<abstract>> *
Hle
dient ————- S getdze()
getName()
print()
A contents
TextHle Directory
getSze() getSze() 1
write(s:Sring) print() %
append(s:Qring) add(x:Fle)
read():Sring remove(x:Fle)
getChild(i:int):Rle
Question 8 — Design by Contract 12 Points

Consider the following code that represents a java implementation of a forgetful queue that is implemented as a
LinkedList. The queue has a limited capacity and follows the standard FIFO principle (First-in-First-out).
However, if we try to add a new item to the queue when it is full, it forgets the first element and adds the new
element as a last element (see enqueue method below). Study the code below and answer the following
guestions.

10

public class ForgetfulQueue=T> {
private final LinkedList<T> items;
private final int capacity;

public ForgetfulQueue(int capacity) {
this.capacity = capacity;
this.items = new LinkedList<>();

public void enqueue(T e} {
if (this.items.size() == this.capacity) {
this. items.removeFirst();

}
this.items.addLast(e);

public int size() {
return this.items.size();

public T dequeue() {
if (this.items.isEmpty()) {
throw new NoSuchElementException(”Queue is empty.”);

}

return this.items.removeFirst();

1. Use Java assertions and directly implement preconditions and postconditions for all the methods of
the ForgetfulQueue class.

11

public class ForgetfulQueue<T> {
Private final int capacity;
Private final LinkedList<T> items;

public ForgetfulQueue (int capacity){
assert capacity > 0
this.capacity = capacity;
items = new LinkedList<>();
assert items.size() ==
assert this.capacity == capacity
assert invariant()

}
public int size() { public boolean invariant() {
int size = items.size() return @ <= capacity &&
return items.size(); capacity == items.size();
assert size == items.size() }
}
public void enqueue(T e) { public T dequeue() {
int size= items.size(); /* returns index of element if
in the set, otherwise -1 x/
// the code assert !items.isEmpty()
assert (size == capacity) implies // the code
items.size()== size
Assert items.size()== size - 1
assert (size < capacity) implies }
items.size()== size + 1
}

12

2. Supply an appropriate class invariant for ForgetfulQueue.
Ans: See the table above

End of Questions

13

	PART A – Basic Knowledge
	Fig.1: Invoice Form
	Question 1 – Object Oriented Design 6 Points
	Question 2 – Object Oriented Design 6 Points
	Question 3 – Coupling and Cohesion 6 Points
	Question 4 – Model-View-Controller 6 Points
	Question 5 – The Solid Principles 6 Points
	Question 6 – The Solid Principles 6 Points

	PART B – Advanced Questions
	Question 7 – Design Patterns 12 Points
	Question 8 – Design by Contract 12 Points

