
 1

DAT055– Object Oriented Applications

Re-Exam 2024-August-26

Examiner: Dr. Yehia Abd Alrahman

 Phone: 031-772 60 54

I will visit the exam hall at approximately one hour after the start, and one hour before the

end.

Examination Rules:

The exam is 60 points and graded as U (0-23)/ 3 (24-35)/ 4 (36-47)/ 5 (48-60) (fail, pass, pass

with merits, pass with distinction).

The exam consists of two parts:

Part A (questions 1-6) consists of questions covering broad knowledge expected to have been

learned.

Part B (questions 7-8) covers advanced questions

Extra Aids: No extra aids allowed.

• Answers must be given in English.

• Use page numbering on your answer sheets.

• Start every question on a fresh page.

• Write clearly; unreadable = wrong!

• Unnecessarily complicated solutions are considered incorrect.

• Read all parts of the exam before starting to answer the first question.

• Indicate clearly when you make assumptions that are not given in the question.

• Insignificant syntax errors and similar will not be penalised.

Good luck!

 2

PART A – Basic Knowledge

Question 1 – Object Oriented Design 6 Points
Study the code below and answer the following question.

public interface IPhone

{

 public void OnCharge();

}

public interface Charger

{

 public void charge();

}

public class Iphone13Charger implements Charger

{

 Iphone4sCharger(){};

 public void charge()

 {

 System.out.println("charging with 13 charger");

 }

}

public class Iphone13To15Adapter implements Charger

{

 Iphone13Charger iphone13Charger;

 Iphone13To15Adapter()

 {

 iphone13Charger = new Iphone13Charger();

 }

 @Override

 3

 public void charge()

 {

 iphone13Charger.charge();

 }

}

public class Iphone15 implements IPhone

{

 Charger Adapter;

 public Iphone15(Charger adapter)

 {

 this.Adapter = adapter;

 };

 @Override

 public void OnCharge()

 {

 Adapter.charge();

 }

}

public class main

{

 public static void main(String args[])

 {

 Iphone15 iphone15 = new Iphone15(new Iphone13To15Adapter());

 iphone15.OnCharge();

 }

}

Plot the class diagram for the code above where you show all kinds of dependencies among the different classes.

 4

Solution:

Question 2 – Object Oriented Design 6 Points

 5

 Fig.1: A Game Application

Consider the class diagram of a game application in Fig.1 and answer the following question:

a) You are required to generate stub classes that conform to Fig.1. (Hint: you are free to use the names
of instance variables in your stub classes unless specified. Moreover, you are not supposed to
implement the weakest relations in terms of coupling).

Solution:

 6

b) Identify the weakest relations in Fig.1 in terms of coupling, and discuss the different alternative
implementations in terms of code?

Solution:

The weakest relations are the dependency relations from GameView and the classes
KillerRabbit, HolyHandGrenade, NiKnight.

They can be implemented either by creating an object of each class inside a method
body of GameView, or by passing an object of any of these classes as a parameter in
a method of GameView.

…. // some code about the implementation of the weakest relations (not applicable

here)

public List<GameObject> objects;

 7

Question 3 – Coupling and Cohesion 6 Points
Consider the snippet below about a class that decides the distinction for different disciplines, and answer the

following questions:

a) Discuss whether the snippets above feature cohesiveness? If not refactor the code.

Solution: the code is cohesive; it serves a single purpose.

b) Discuss whether the snippets above suffer from tight coupling? If yes, motivate your answer by

identifying a problem that may appear in the future and refactor your code accordingly.

Solution: The code suffers from tight coupling on the lists: science and arts. The problem is that if a

new discipline is added, the class needs to be modified, and a new list must be added. Moreover, the

method of the class needs to be modified. A possible solution would be as follows.

 8

The ArtDistinctionDecider is like the science one.

c) One argues that future updates to this code may incur an increase in its cyclomatic complexity, do you
agree? If yes, how?

Solution: Yes, I agree, the cyclomatic complexity is a measure to the number of paths in a program. If

we look at the evaluation distinction method, we can see that currently it has many paths due to

multiple if-statements. If new disciplines are added then we would need to add more if-statements, and

thus increase the cyclomatic complexity.

Question 4 – Model-View-Controller 6 Points

Consider an MVC CLI application according to the following requirements: The user types a message and aims

to send it to all potential listeners (use MessageListener as class name). The input of the CLI is read by listening

to the system standard input. All messages are stored in an object of the class MessageQueue. When the user

types the message and hits Enter, the message is stored in the queue and is autonomously propagated to all

listeners. Listeners pick up messages and display them on the system standard output.

1. Identify the Model , the View, and the Controller in this application.

Solution:

Model: MessageQueue

View: MessageListener

Controller: a class that run the app. That is, it observe the standard input, query the model and mediate

the interaction with MessageListners.

2. To permit autonomous delivery of the message for all listeners without asking, what design pattern is
appropriate to realize this MVC architecture?

Solution: Observer design pattern

3. Plot the class diagram of your concrete design.

Solution:

 9

Question 5 – The Solid Principles 6 Points
Consider the class diagram below and answer the following question:

Argue whether the design violates any of the SOLID principle? If yes, explain why, which principles
(give an example if something does not work), and propose a fix.

Solution: This design violates Liskov Substitution Principe. Note that the class ReadOnlyDocument
cannot support the save() method that inherits from the Document class. In other words,
ReadOnlyDocument does not satisfies the same properties that Document satisfies, and will
sometimes fail when a save() method is called.

There are many ways to fix this design. One possible way is to change ReadOnlyDocument to
WriteDocument class. Another way is to completely remove the ReadOnlyDocument class.

Question 6 – The Solid Principles 6 Points
Consider the class diagram below for a budget report that manipulates a database. Answer the following

questions:

Y. Abd Alrahman

CLI CHAT (SOLUTION)

 10

1. What principles does this code violate? Explain and give a scenario (also future update) for such

violation.

Solution: this design violates the Dependency Inverstion Principle. The BudgetReport is tightly

coupled to MySQLDatabase. This means that MySQLDatabase should be developed before

BudgetReport. What if we require a different database in the future?

2. Refactor this design so that it preserves the SOLID principles.

Solution: A possible solution can be found below:

 11

PART B – Advanced Questions

Question 7 – Design Patterns 12 Points
Imagine you are building an application to represent an order as shown in the figure below. An order can be a

complex package that either contains a simple order such as a Hammer or a complex order such as a smaller

package. Assume that any order has a single operation named displayOrderInfomration().

1. Pick an appropriate design pattern to implement this application and plot the class diagram.

Solution: Composite Design Pattern

2. Show how the displayOrderInfomration() method can be implemented for both simple and
complex orders.

 12

Solution:

For simple order: it can be simple print statement, e.g., System.Out.Println(“some message”);

For complex order: it should loop over all its children as follows:

for (Order order : orders)

{

 order. displayOrderInfomration();

}

 Note that the for loop is looping over the interface Order. This is because a complex order can
compose either simple or complex orders.

Question 8 – Design by Contract 12 Points
Consider the following code that represents a java implementation of a size-limited integer set using array. The

set does not accept duplicates, and has a limited size as defined below. Study the code below and answer the

following questions.

 13

 14

1. Use assertions and directly implement preconditions and postconditions inside the code of the
methods, and the constructor if needed.

See the red part above.

2. Fill the method invariant() in the table above, which must specify the invariant on the class

LimitedIntSet.

3.
See the red part above.

Note: If you use the math implementation or a code implementation both are acceptable. Here, I use the

math representation for the sake of brevity.

End of Questions

	PART A – Basic Knowledge
	Question 1 – Object Oriented Design 6 Points
	Question 2 – Object Oriented Design 6 Points
	Question 3 – Coupling and Cohesion 6 Points
	Question 4 – Model-View-Controller 6 Points
	Question 5 – The Solid Principles 6 Points
	Question 6 – The Solid Principles 6 Points

	PART B – Advanced Questions
	Question 7 – Design Patterns 12 Points
	Question 8 – Design by Contract 12 Points

