
 1

DAT055– Object Oriented Applications

Exam & Solution 2024-May-31

Examiner: Dr. Yehia Abd Alrahman

I will visit the exam hall at approximately one hour after the start, and one hour before the

end.

Examination Rules:

The exam is 60 points and graded as U (0-23)/ 3 (24-35)/ 4 (36-47)/ 5 (48-60) (fail, pass, pass

with merits, pass with distinction).

The exam consists of two parts:

Part A (questions 1-6) consists of questions covering broad knowledge expected to have been

learned.

Part B (questions 7-8) covers advanced questions

Extra Aids: No extra aids allowed.

• Check that your exam paper is 8 pages.

• Answers must be given in English.

• Use page numbering on your pages.

• Start every question on a fresh page.

• Write clearly; unreadable = wrong!

• Unnecessarily complicated solutions are considered incorrect.

• Read all parts of the exam before starting to answer the first question.

• Indicate clearly when you make assumptions that are not given in the question.

• Insignificant syntax errors and similar will not be penalised.

Good luck!

 2

PART A – Basic Knowledge

Question 1 – Object Oriented Design 6 Points
Study the code snippet below and answer the following questions.

1. Plot the class diagram for the code above where you show all kinds of dependencies among the
different classes.

Solution:

….

 3

2. If you are required to supply a driver class that uses the GameView class, called App, how should you
modify your class diagram? (plot the change).

Solution:

Question 2 – Object Oriented Design 6 Points

 Fig.1: A CLI Chat Application

Consider the class diagram of a CLI Chat application in Fig.1 and answer the following questions:

a) You are required to generate stub classes that conform to Fig.1. (Hint: you are free to use the names
of instance variables in your stub classes unless specified).

Solution:

public class Controller {

 private MessageQueue msg;

Y. Abd Alrahman

CLI CHAT (SOLUTION)

 4

 public void run(){}

}

public class MessageListener implements Observer {

 private String userId;

 @Override

 public void update(Observable messageQueue) {

 }

}

public class MessageQueue implements Observable {

 private Set<Observer> observers = new HashSet<>();

 private Queue<String> message = new LinkedList<>();

 @Override

 public void addObserver(Observer obs) {}

 @Override

 public void removeObserver(Observer obs) {}

 public void add(String input) {

 }

 @Override

 public void notifyObservers() {}

 public String getMessage() {}

}

public interface Observer {

 public void update(Observable mesgQueue);

}

public interface Observable {

 public void addObserver(Observer obs);

 public void removeObserver(Observer obs);

 public void notifyObservers();

 public String getMessage();

}

b) Discuss the role of the Observer interface: is it needed? (Hint: If we remove this interface and allow
the MessageQueue class to directly reference a set of MessageListener instead of Observer, what will
happen?)

Solution: The is used to break the dependency between the Model and the View. Without it, adding
new types of observers in the future other than MessageListener would break the code. So, Yes, it is
needed.

 5

Question 3 – Coupling and Cohesion 6 Points
The snippets below and answer the following questions:

a) Discuss whether the snippets above feature cohesiveness? If not refactor the code.

Solution: The code is cohesive.

b) Discuss whether the snippets above suffer from tight coupling? If yes, motive your answer by
identifying a problem that may appear in the future and refactor your code accordingly.

Solution: The View class is tightly coupled to the SQL database. If in the future, we want to change this
to another type of database, we must change the View class. The solution is to create an interface for
a generic database, and we reference the interface in the View class.

Public interface Database{

 public void saveEmpId(String empId);

}

public class View {

 private Database database;

 public View(Database database)

 {

 This.database = database;

 }

 public void saveEmpId(String empId){

 database.saveEmpId(empId);

 }

}

 6

public class SQLDatabase implements Database{

 @Override

 public void saveEmpId(String empId){

 System.out.println("");

 }

}

Question 4 – Design Patterns 6 Points
Study the code snippet in the table below: The main class is the driver of this application, which is responsible of

creating an iPhone15 instance, attach its charger, and put the iPhone on charge.

1. The problem is that you only have an iPhone13 charger which is compatible with iPhone15 in terms of

power specification, but they have different connectors. Pick a design pattern that can help you in
solving this problem without modifying classes (except for the main class). (Hint: Iphone13Charger
class is the same as the Iphone15Charger class. You are not supposed to implement any code for

 7

connectors. You only need to allow to call the charge method in Iphone13Charger when you put your
iPhone15 on charge. You may need to introduce new helping classes).

Solution: we can solve this problem by using an adapter. This means that in the main class, inside the

main method, we want to be able to pass an adapter to an iphone13 charger instead of the original

Iphone15charger. The adapter must be of type Charger as follows:

public class main

{

 public static void main(String args[])

 {

 Iphone15 iphone15 = new Iphone15(new Iphone13To15Adapter());

 iphone15.OnCharge();

 }

}

This is possible because an Iphone15 accepts any object of type Charger. Now it remains to create

the adapter class.

public class Iphone13To15Adapter implements Charger

{

 private Iphone13Charger iphone13Charger;

 Iphone13To15Adapter ()

 {

 iphone13Charger = new Iphone13Charger();

 }

 @Override

 public void charge()

 {

 iphone13Charger.charge();

 }

}

2. What design pattern have you used?

Solution: we use the Adapter design pattern.

 8

3. Plot the class diagram of your design.
Solution:

Question 5 – The Solid Principles 6 Points
Consider the code snippets in Question1 and answer the following questions:

1. Argue whether the GameView class violates any of the SOLID principle or not? If yes, refactor the code
accordingly.

Solution: It violates the OCP principle because the draw() method is tightly dependent on the different
implementations of the GameObject interface. If a new implementation is introduced in the future,
we need to change the body of this draw method. Thus, we need to break such tight dependencies.

public interface GameObject{

 public Position getPosition();

 public void draw(Canvas canvas);

}

We remove the specialized draw methods for various game objects (i.e., drawRabbit(),
drawHandGrenade(), drawKnight()). Instead, we create a draw() method in the GameObject
interface so that it is overridden by all implementations. We also pass the Canvas as a parameter to
ensure that they all draw inside the same canvas when we execute draw() in the GameView class.
Now the new draw() method is simply as follows:

public void draw()

{

 canvas.clear();

 for (GameObject g : model.getGameObjects()) {

 g.draw(canvas);

 }

}

Notice that draw() only depends on the interface GameObject.

2. Plot the class diagram for the refactored code only.

 9

Solution: The only difference in the class diagram is that the dependencies from class GameView on

the implementations of GameObject must be now removed. All other details stay the same.

Question 6 – The Solid Principles 6 Points
Consider the code snippet below and answer the following questions:

1. What principles does this code violate? Explain and give a scenario for each violation.

Solution: it violates LSP (the Duck class does not provide an implementation for the overridden walk()
method), ISP (the interface is bloated with methods that can be implemented by different objects),
and SRP (Animal interface serves many purposes that are not shared by all animals).

2. Refactor this code so that it preserves all SOLID principles.

Solution: break the Animal interface into 3 interfaces, e.g., WalkingAnimal, flyingAnimal,

SwimmingAnimal, and Duck can implement only interfaces that supports as follows:

public interface WalkingAnimal{
 void walk();
}

public interface FlyingAnimal{
 void fly();
}

public interface SwimmingAnimal{
 void swim();

 10

}

public class Duck implements FlyingAnimal, SwimmingAnimal {

 @Override
 public void swim() {
 System.out.println("swim");
 }

 @Override
 public void fly() {
 System.out.println("fly");
 }
}

PART B – Advanced Questions

Question 7 – Design Patterns 12 Points
Imagine you are building a project management system that creates tasks for employees to perform. A Task is

defined as follows:

• A Task has a title (String).

• Responsibilities are: getTitle(), setTitle(), and execute().

1. You are required to plot the class diagram for the Task following the specifications.

Solution:

2. Assume that the structure in your company changed, where employees are structured into

departments. Now, a task can be a SimpleTask (to be executed by a single employee) with
specifications as before or a ComplexTask (to be executed by a department). The latter is a list of
subtasks that can be assigned to a department. More precisely, you are required to change your class
diagram only for Task (by choosing appropriate design pattern) according to the following
specifications:

• A Task has a title and can be either a SimpleTask or a ComplexTask.

• Responsibilities for SimpleTask are: getTitle(), setTitle(), and execute().

• Responsibilities for ComplexTask are: addTask(Task task), removeTask(Task task), execute().

• A ComplexTask can contain a mixture of simple and/or complex subtasks.

 11

• When a ComplexTask is executed, all its subtasks must be executed. The code of execute() for a simple
task is to print “executed” while other methods are defined as usual.

(Note: no points if you re-invent the wheel (i.e., without a proper use of a design pattern)).

Solution: This is a typical example of a composite design pattern

3. Generate stub classes according to the change in the previous item.

Solution: the stub classes here are standard as before the only difference is that the execute method
of the ComplexTask. Its body should call the bodies of in the task list.

Question 8 – Design by Contract 12 Points
Consider the following code that represents a stack implementation as a LinkedList. The main stack class

(LinkedStack) implements the interface (StackInterface), and thus providing the standard methods supported

by a stack as follows:

Name Usage Specifications

boolean isEmpty() Returns true if the stack is empty

and false otherwise.

Pre: True

Post: stack is not changed

int size() Returns an integer representing the

number of elements in the stack

Pre: True

Post: stack is not changed

void push(E item) Adds an item with type E to the
stack.

Pre: True

Post: (1) stack is not empty

 (2) top points to the item

 (3) invariant still holds

E top() Returns the item on the top of the

stack.

Pre: stack is not empty (otherwise

throws exception)

Post: stack is not changed

void pop() Removes the top item on the stack Pre: Pre: stack is not empty

(otherwise throws exception)

Post: size is decremented

 12

LinkedStack has two instance variables: (1) top of type Cell to refer to the top element in the stack. Notice that

Cell is implemented as an inner class where it has an item of type E (representing data), and a pointer next of

type Cell pointing to the next Cell (see example figure below with E=int); (2) size to store the current size of the

stack.

(The specifications are left empty so that you fill them in as part of your solution)

 13

 14

1. Study the code above and fill all the specifications of all the five methods using the Design-by-Contract
approach.

Solution:
See the red text in the table above.

2. Use assertions and directly implement preconditions and postconditions inside the code if needed.

public LinkedStack() {
 top = null;
 size = 0;
 assert invariant(); // invariant
 }

@Override
 public void pop() {
 int currentSize= this.size;
 assert !this.isEmpty(); // pre-condition
 top=top.next;
 size--;
 assert this.size==currentSize-1; // post-condition
 }

@Override
 public void push(E item) {
 top = new Cell(item, top);
 size++;
 assert !this.isEmpty(); // post-condition
 assert this.top() == item; // post-condition
 assert invariant(); // invariant
 }

@Override
 public E top() {
 assert !this.isEmpty(); // pre-condition
 return top.item;
 }

protected boolean invariant() { // not part of this item.
 return (size >= 0) &&
 ((size == 0 && this.top == null)
 || (size > 0 && this.top != null));
 }

No change for other methods.

 15

3. Fill the method invariant() in the table above, which must specify the invariant on the class
LinkedStack. Note: you need to adjust the specification of the constructor and other methods if
required.

Solution:

 (size >= 0) &&

 ((size == 0 && this.top == null)

 || (size > 0 && this.top != null));

End of Questions

	PART A – Basic Knowledge
	Question 1 – Object Oriented Design 6 Points
	Question 2 – Object Oriented Design 6 Points
	Question 3 – Coupling and Cohesion 6 Points
	Question 4 – Design Patterns 6 Points
	Question 5 – The Solid Principles 6 Points
	Question 6 – The Solid Principles 6 Points

	PART B – Advanced Questions
	Question 7 – Design Patterns 12 Points
	Question 8 – Design by Contract 12 Points

