DATO055- Object Oriented Applications
Exam & Solution 2024-May-31

Examiner: Dr. Yehia Abd Alrahman

I will visit the exam hall at approximately one hour after the start, and one hour before the
end.

Examination Rules:
The exam is 60 points and graded as U (0-23)/ 3 (24-35)/ 4 (36-47)/ 5 (48-60) (fail, pass, pass
with merits, pass with distinction).

The exam consists of two parts:

Part A (questions 1-6) consists of questions covering broad knowledge expected to have been
learned.

Part B (questions 7-8) covers advanced questions

Extra Aids: No extra aids allowed.

e Check that your exam paper is 8 pages.

e Answers must be given in English.

e Use page numbering on your pages.

e Start every question on a fresh page.

e Write clearly; unreadable = wrong!

e Unnecessarily complicated solutions are considered incorrect.

e Read all parts of the exam before starting to answer the first question.

e Indicate clearly when you make assumptions that are not given in the question.
e Insignificant syntax errors and similar will not be penalised.

Good luck!



PART A — Basic Knowledge

Question 1 — Object Oriented Design 6 Points
Study the code snippet below and answer the following questions.

public class GameView {
private Canvas canvas;
private GameModel model;

public GameView(Canvas canvas, GameModel model) {

// This method is not thread-safe, but this is not to be considered a
// defect in this context.
public void draw() {
canvas.clear(); // Clears the canvas before drawing.
for(GameObject g : model.getGameObjects()) {
if(g instanceof KillerRabbit) {
drawRabbit(g);
} else if(g instanceof HolyHandGrenade) {
drawHandGrenade(g);
} else if(g instanceof NiKnight) {
drawkKnight(g);
} else {
System.out.println(”No such monster!”);
¥
}

. // Draw-methods for the various types of GameObjects to the view’s canvas.

}

public interface GameObject {
public Position getPosition();

}

public class GameModel {
/** Returns all objects in the game. */
public List<GameObject> getGameObjects() {

}
}

public class KillerRabbit implements GameObject { ... }
public class HolyHandGrenade implements GameObject { ... }

public class NiKnight implements GameObject { ... }

1. Plot the class diagram for the code above where you show all kinds of dependencies among the
different classes.

Solution:



GameView

Ve

Canvas

{

GameModel

- gameObjects: GameObject[] K>——

«Interface»

GameObject

KillerRabbit HolyHandGrenade NiKight

7Y

2. Ifyou are required to supply a driver class that uses the GameView class, called App, how should you
modify your class diagram? (plot the change).

Solution:
GameModel
................... )
GameView
< ................ App
................... > Canvas
Question 2 — Object Oriented Design 6 Points
«lnterfaces» «Interfacew
Observable Observer
+addObserver(Observer obs) +update(Observable mesgQueue)
+removeObserver(Observer obs)
+notifyObservers(Observer obs)
+getMessage() ‘Q‘
ya |

! i

! :

I

| 1

! )

Controller «Model» : —
« »
-msg: MessageQueue MessageQueue MessageListener
+rung - observers: Observer(] —
- msg: Queue<String> userld: String
+ add() + update(Observable messageQueue)

Fig.1: A CLI Chat Application
Consider the class diagram of a CLI Chat application in Fig.1 and answer the following questions:

a) You are required to generate stub classes that conform to Fig.1. (Hint: you are free to use the names
of instance variables in your stub classes unless specified).

Solution:

public class Controller {

private MessageQueue msg;




b)

public void run(){}
}

public class Messagelistener implements Observer {
private String userId;
@0verride
public void update(Observable messageQueue) {

}

public class MessageQueue implements Observable {

@0verride

public void addObserver(Observer obs) {}
@0verride

public void removeObserver(Observer obs) {}
public void add(String input) {

}

@0verride

public void notifyObservers() {}

public String getMessage() {}

public interface Observer {

public void update(Observable mesgQueue);

public interface Observable {
public void addObserver(Observer obs);
public void removeObserver(Observer obs);
public void notifyObservers();

public String getMessage();

private Set<Observer> observers = new HashSet<>();

private Queue<String> message = new LinkedList<>();

Discuss the role of the Observer interface: is it needed? (Hint: If we remove this interface and allow
the MessageQueue class to directly reference a set of Messagelistener instead of Observer, what will

happen?)

Solution: The is used to break the dependency between the Model and the View. Without it, adding
new types of observers in the future other than MessageListener would break the code. So, Yes, it is

needed.



Question 3 — Coupling and Cohesion 6 Points
The snippets below and answer the following questions:

public class View {
private SQLDatabase sqlDatabase;
public View()
{
sqlDatabase = new SQLDatabase();
}
public void saveEmpId(String empId){
sqlDatabase.saveEmpId(empId);

public class SQLDatabase{
public void saveEmpId(String empId){
System.out.println("");

a) Discuss whether the snippets above feature cohesiveness? If not refactor the code.
Solution: The code is cohesive.

b) Discuss whether the snippets above suffer from tight coupling? If yes, motive your answer by
identifying a problem that may appear in the future and refactor your code accordingly.

Solution: The View class is tightly coupled to the SQL database. If in the future, we want to change this
to another type of database, we must change the View class. The solution is to create an interface for
a generic database, and we reference the interface in the View class.

Public interface Database{
public void saveEmpId(String empId);
}
public class View {
private Database database;
public View(Database database)
{
This.database = database;
}
public void saveEmpId(String empId){
database.saveEmpId(empId);




@0verride

System.out.println("");

public class SQLDatabase implements Database{

public void saveEmpId(String empId){

Question 4 — Design Patterns
Study the code snippet in the table below: The main class is the driver of this application, which is responsible of
creating an iPhonel5 instance, attach its charger, and put the iPhone on charge.

6 Points

public interface IPhone

{

public void OnCharge();

public interface Charger

{

public void charge();

public class Iphonel5 implements
IPhone

{

}

Charger charger;
public Iphonel5
(Charger charger)

{

this.charger = charger;
J5
@Override

public void OnCharge()
{

charger.charge();

public class Iphonel5charger
implements Charger

Iphonel5charger ()
{

i

@0verride
public void charge()
{
System.out.println
("is charging");

public class main

{

public static void main(String args[])

{

Iphonel5 iphonel5 = new Iphonel5(new Iphonel5charger());

iphonel5.0nCharge();

The problem is that you only have an iPhonel3 charger which is compatible with iPhonel5 in terms of
power specification, but they have different connectors. Pick a design pattern that can help you in
solving this problem without modifying classes (except for the main class). (Hint: Iphonel3Charger
class is the same as the Iphonel5Charger class. You are not supposed to implement any code for



connectors. You only need to allow to call the charge method in Iphonel3Charger when you put your
iPhonel5 on charge. You may need to introduce new helping classes).

Solution: we can solve this problem by using an adapter. This means that in the main class, inside the
main method, we want to be able to pass an adapter to an iphonel3 charger instead of the original
Iphonel5charger. The adapter must be of type Charger as follows:

public class main

{

public static void main(String args[])

{
Iphone15 iphone15 = new Iphone15(new Iphone13To15Adapter());

iphone15.0nCharge();

}

This is possible because an Iphonel5 accepts any object of type Charger. Now it remains to create
the adapter class.

public class Iphone13To15Adapter implements Charger

{
private Iphone13Charger iphone13Charger;

Iphone13To15Adapter ()
{
iphone13Charger = new Iphone13Charger();
}
@0Override

public void charge()

{
iphone13Charger.charge();

2.  What design pattern have you used?

Solution: we use the Adapter design pattern.



Plot the class diagram of your design.
Solution:

«lnterfaces

«Interfaces
Iphone

Charger
+charge(): void

+onCharge(): void

A E4l
' ‘
‘
'
|

Iphane1s

e

+onCharge(): void ,[
schargel(}: void

‘

Iphone13To1 5Adapter Iphone13Charger

+lphone13To15Charger(): [K>———+charge(): void
+charge(): void

Main

+main(args(]: String): void

Question 5 —The Solid Principles 6 Points
Consider the code snippets in Question1 and answer the following questions:

1.

2.

Argue whether the GameView class violates any of the SOLID principle or not? If yes, refactor the code
accordingly.

Solution: It violates the OCP principle because the draw() method is tightly dependent on the different
implementations of the GameObject interface. If a new implementation is introduced in the future,
we need to change the body of this draw method. Thus, we need to break such tight dependencies.

public interface GameObject{
public Position getPosition();

public void draw(Canvas canvas);

We remove the specialized draw methods for various game objects (i.e., drawRabbit(),
drawHandGrenade(), drawKnight()). Instead, we create a draw() method in the GameObject
interface so that it is overridden by all implementations. We also pass the Canvas as a parameter to

ensure that they all draw inside the same canvas when we execute draw() in the GameView class.
Now the new draw() method is simply as follows:

public void draw()
{
canvas.clear();

for (GameObject g : model.getGameObjects()) {

g.draw(canvas);

Notice that draw() only depends on the interface GameObject.

Plot the class diagram for the refactored code only.



Solution: The only difference in the class diagram is that the dependencies from class GameView on
the implementations of GameObject must be now removed. All other details stay the same.

Question 6 — The Solid Principles

6 Points

Consider the code snippet below and answer the following questions:

public interface Animal{
void swim();

public class Duck implements Animal {

void fly(); a0verride
void walk(); public void swim() {
} System.out.println("swim");
}
a0verride

public void fly() {
System.out.println("fly");

a0verride
public void walk() {
}

1.  What principles does this code violate? Explain and give a scenario for each violation.
Solution: it violates LSP (the Duck class does not provide an implementation for the overridden walk()
method ), ISP (the interface is bloated with methods that can be implemented by different objects),

and SRP (Animal interface serves many purposes that are not shared by all animals).

2. Refactor this code so that it preserves all SOLID principles.

Solution: break the Animal interface into 3 interfaces, e.g., WalkingAnimal, flyingAnimal,
SwimmingAnimal, and Duck can implement only interfaces that supports as follows:

public interface WalkingAnimal{
void walk();

public interface FlyingAnimal{
void fly();

public interface SwimmingAnimal{
void swim();




public class Duck implements FlyingAnimal, SwimmingAnimal {

@0verride
public void swim() {
System.out.println("swim");

a0verride
public void fly() {
System.out.println("fly");

PART B — Advanced Questions

Question 7 — Design Patterns 12 Points
Imagine you are building a project management system that creates tasks for employees to perform. A Task is
defined as follows:

e ATask has a title (String).
e Responsibilities are: getTitle(), setTitle(), and execute().

1. You are required to plot the class diagram for the Task following the specifications.

Solution:

Task

-title: String
+getTitle()
+setTitle()
+execute()

2. Assume that the structure in your company changed, where employees are structured into
departments. Now, a task can be a SimpleTask (to be executed by a single employee) with
specifications as before or a ComplexTask (to be executed by a department). The latter is a list of
subtasks that can be assigned to a department. More precisely, you are required to change your class
diagram only for Task (by choosing appropriate design pattern) according to the following
specifications:

e ATask has a title and can be either a SimpleTask or a ComplexTask.

e Responsibilities for SimpleTask are: getTitle(), setTitle(), and execute().

e Responsibilities for ComplexTask are: addTask(Task task), removeTask(Task task), execute().
e A ComplexTask can contain a mixture of simple and/or complex subtasks.

10



e  When a ComplexTask is executed, all its subtasks must be executed. The code of execute() for a simple
task is to print “executed” while other methods are defined as usual.

(Note: no points if you re-invent the wheel (i.e., without a proper use of a design pattern)).

Solution: This is a typical example of a composite design pattern

«Abstract»
Task

-title: String

+getTitle()
+setTitle()
+execute()

SimpleTask

ComplexTask
+execute() tasks: Task][]
+addTask{task: Task)

+removeTask{task: Task)
+execute()

Note..

The execute mehtod for ComplexTask
simply loops over every task in the list
and call its execute method.

3. Generate stub classes according to the change in the previous item.

Solution: the stub classes here are standard as before the only difference is that the execute method
of the ComplexTask. Its body should call the bodies of in the task list.

Question 8 — Design by Contract 12 Points
Consider the following code that represents a stack implementation as a LinkedList. The main stack class
(LinkedStack) implements the interface (Stacklnterface), and thus providing the standard methods supported
by a stack as follows:

Name Usage Specifications
boolean isEmpty() Returns true if the stack is empty Pre: True
and false otherwise.

Post: stack is not changed
int size() Returns an integer representing the | Pre: True
number of elements in the stack

Post: stack is not changed
void push(E item) Adds an item with type E to the Pre: True
stack.

Post: (1) stack is not empty

(2) top points to the item

(3) invariant still holds
E top() Returns the item on the top of the | Pre: stack is not empty (otherwise
stack. throws exception)

Post: stack is not changed
void pop() Removes the top item on the stack | Pre: Pre: stack is not empty
(otherwise throws exception)

Post: size is decremented

11



LinkedStack has two instance variables: (1) top of type Cell to refer to the top element in the stack. Notice that

Cell is implemented as an inner class where it has an item of type E (representing data), and a pointer next of

type Cell pointing to the next Cell (see example figure below with E=int); (2) size to store the current size of the

stack.

top | 99|

25| N

(The specifications are left empty so that you fill them in as part of your solution)

12



public interface StackInterface<E> {
public boolean isEmpty();

public int size();
public void push(E item);
public E top();

public void pop();

public class LinkedStack<E> implements StackInterface<E> {

protected Cell top;
protected int size;

public class Cell {
E item;
Cell next;

Cell(E item, Cell next) {
this.item = item;
this.next = next;

}

public LinkedStack() {

protected boolean invariant() {

top = null; //fill invairant
size = 0; }
}
aOverride aOverride

public boolean isEmpty() {
return this.size==0;

}

public void pop() {
top=top.next;
size--;

a0verride
public void push(E item) {
top = new Cell(item, top);
size++;

a0verride
public int size() {
return this.size;

}

13



Study the code above and fill all the specifications of all the five methods using the Design-by-Contract
approach.

Solution:
See the red text in the table above.

Use assertions and directly implement preconditions and postconditions inside the code if needed.

public LinkedStack() {

top = null;
size = 0;
assert invariant(); // invariant
}
@0verride

public void pop() {
int currentSize= this.size;
assert !this.isEmpty(); // pre-condition
top=top.next;
size--;
assert this.size==currentSize-1; // post-condition

@0verride
public void push(E item) {
top = new Cell(item, top);

size++;
assert !this.isEmpty(); // post-condition
assert this.top() == item; // post-condition
assert invariant(); // invariant
}
@0verride

public E top() {
assert !this.isEmpty(); // pre-condition
return top.item;

protected boolean invariant() { // not part of this item.
return (size >= 0) &&
((size == 0 && this.top == null)
|| (size > 0 && this.top !'= null));

No change for other methods.

14



Fill the method invariant() in the table above, which must specify the invariant on the class
LinkedStack. Note: you need to adjust the specification of the constructor and other methods if
required.

Solution:

(size >= 0) &&
((size == 0 && this.top == null)
|| (size > 0 && this.top != null));

End of Questions

15



	PART A – Basic Knowledge
	Question 1 – Object Oriented Design        6 Points
	Question 2 – Object Oriented Design        6 Points
	Question 3 – Coupling and Cohesion       6 Points
	Question 4 – Design Patterns        6 Points
	Question 5 – The Solid Principles        6 Points
	Question 6 – The Solid Principles        6 Points

	PART B – Advanced Questions
	Question 7 – Design Patterns         12 Points
	Question 8 – Design by Contract        12 Points


