
1

Institutionen för Data- och informationsteknik
Chalmers Tekniska Högskola
Ansvarig lärare: Johannes Åman Pohjola

DAT050 Objektorienterad Programmering

Tenta, 2024-10-31, 08:30-12:30

Betygsgränser: U (0-23 poäng); 3 (24-35 poäng); 4 (36-47 poäng); 5 (48-60 poäng)

Vänligen notera:

• Fr̊agor kan besvaras p̊a svenska eller engelska.

• Skriv tydligt.

• När du gör antaganden som inte finns med i fr̊ageställningen, var tydlig med det.

Lycka till!

2

Fr̊aga 1: Begreppsförst̊aelse (14 poäng)

Besvara följande fr̊agor kortfattat (n̊agon mening räcker) och med egna ord:

(a) Vad är relationen mellan en klass och ett objekt? (2 poäng)

(b) Vad gör nyckelordet private för n̊agonting? (2 poäng)

(c) Vad är det för skillnad mellan ett interface och en abstrakt klass? (2 poäng)

(d) Vad innebär l̊ag koppling, och varför är det önskvärt i objektorienterad programmering?

(2 poäng)

(e) Vad skiljer en referenstyp fr̊an en primitiv typ? (2 poäng)

(f) Vad skiljer en statisk metod fr̊an en instansmetod? (2 poäng)

(g) Vad är modellens roll i designmönstret MVC? (2 poäng)

3

Fr̊aga 2: Specifikationer (6 poäng)

(a) /** Compute x distance between two points

@param p1 a point

@param p2 another point

@return the distance along the x-axis between points p1 and

p2

*/

s ta t i c int distX(Point p1 , Point p2) {

return Math.abs(p1.x - p2.x);

}

Vilket potentiellt körfel har specifikationen av distX glömt nämna? Föresl̊a en ändring
av specifikationen för att lösa problemet. (3 poäng)

(b) Skriv en specifikation i javadocformat som beskriver följande metods beteende:

s ta t i c List <Integer > sub(List <Integer > l1 , List <Integer > l2) {

List <Integer > output = new LinkedList <>();

for (int i = 0; i < l1.size(); i++) {

i f (i >= l2.size())

return output;

e l se
output.add(l1.get(i) - l2.get(i));

}

return output;

}
(3 poäng)

4

Fr̊aga 3: Programmera datastrukturer (10 poäng)

Betrakta följande implementation av klassen Bag, en enkel datastruktur som endast stödjer
tre operationer: lägg till ett tal i p̊asen, returnera summan av alla heltal i p̊asen, och returnera
medelvärdet av alla tal i p̊asen.

public c la s s Bag {

private LinkedList <Integer > elements;

public Bag() {

elements = new LinkedList <>();

}

public void add(int i) {

elements.add(i);

}

public int sum() {

int sum = 0;

for (int i : elements)

sum += i;

return sum;

}

public int average () {

return sum() / elements.length ();

}

}

Följande uppgifter ska lösas frist̊aende fr̊an varandra om inte annat anges.

(a) Skriv en kopieringskonstruktor för Bag med följande signatur:

public Bag(Bag bag)

Konstruktorn bör se till att inga aliasingproblem kan uppst̊a mellan den nya och gamla
p̊asen. (3 poäng)

(b) Skriv en immutable version av Bag. Du f̊ar använda konstruktorn fr̊an tidigare uppgift
(oavsett om du löst uppgiften eller ej). Gränssnittet bör vara samma, förutom att add

ska ha returtype Bag. (3 poäng)

(c) Bags interna representation kan förenklas. Skriv en alternativ implementation som har
samma beteende ut̊at sett, men har tv̊a instansvariabler av typen int istället för en
instansvariabel av typen LinkedList<Integer>. (4 poäng)

5

Fr̊aga 4: Programmera spelkort (15 poäng)

(a) Skriv en klass (och eventuella hjälpklasser) med signaturen

public c la s s Card implements Comparable <Card > { ... }

som representerar ett spelkort i en vanlig 52-korts kortlek.1

Intern datarepresentation kan göras efter eget huvud, men klassen bör implementera
följande funktionalitet:

• Konstruktor(er) s̊a att alla kort kan skapas, och som ser till att inga nonsenskort
kan skapas (t ex, ingen Spader 452).

• En compareTo som jämför om ett kort är mer värt än ett annat. 2

• En metod som returnerar true om tv̊a kort har samma färg, med följande signatur:
public boolean sameSuite(Card other)

• En implementation av equals som returnerar true om argumentet är ett Card-
objekt med samma färg och valör, och false annars.

(9 poäng)

(b) Skriv en klass Deck som representerar en draghög av kort. En draghög best̊ar av noll
eller flera kort i en viss ordning; använd Card fr̊an tidigare uppgift för att representera
enstaka kort.3 Skriv metoder för att:

• Konstruera en draghög med ett av varje kort i.

• Dra det översta kortet ur en draghög. Metoden bör returnera ett Card, och ta bort
samma kort ur draghögen. Om draghögen är tom ska en (valfri) exception kastas.

• Blanda en draghög. Detta kan göras p̊a olika sätt, men använd Random s̊a att
blandningen inte blir samma varje g̊ang.

(6 poäng)

1Ett kort har en valör och en färg. Färgen är antingen hjärter, klöver, ruter eller spader. Valörerna är 2,
3, 4, 5, 6, 7, 8, 9, 10, Knekt, Dam, Kung, Ess.

2Kort med högre valör är mer värda än kort med lägre valör (2 är lägst, Ess är högst). Om korten har
samma valör är hjärter värt mer än spader, som är värt mer än ruter, som är värt mer än klöver.

3om du inte löst tidigare uppgift, gör antaganden om hur Card fungerar och redovisa dem.

6

Fr̊aga 5: GUI-programmering (15 poäng)

(a) Skriv ett program som ritar upp ett tomt fönster (JFrame). Fönstret ska ändra storlek
varje g̊ang muspekaren flyttas, s̊a att muspekaren alltid befinner sig i mitten av fönstret.
Notera dock följande undandtag:

• Fönstret ska aldrig vara mindre än 50 pixlar brett i x-led.

• Fönstret ska aldrig vara mindre än 50 pixlar högt i y-led.
(5 poäng)

(b) Utöka programmet fr̊an föreg̊aende del s̊a att ett sp̊ar ritas ut efter muspekarens rörelser.
En g̊ang per sekund, spara koordinaterna som muspekaren senast siktade p̊a. När
fönstret ritas upp, rita linjer som följer sp̊aret av koordinater som sparats hittills.

(10 poäng)

Följande screenshots är ett exempel p̊a hur en körning av programmet kan se ut. Till vänster
visas fönstret fr̊an början (innan pekaren flyttats in i fönstret). Till höger visas fönstret
efter att pekaren flyttats inom fönstret i n̊agra sekunder. Notera att fönstret förstorats s̊a
att muspekaren är mitten för (a)-uppgiften, och sp̊aren som visar musrörelser hittills för
(b)-uppgiften.

Om du löser b̊ada delarna behöver inte (a)-delen redovisas separat.

(totalt 60p)

7

Utdrag ur Javas API

public class LinkedList<E>

LinkedList()

Constructs an empty list.
boolean add(E e)

Appends the specified element to the end of this list.
E remove()

Retrieves and removes the head (first element) of this list.
E get(int index)

Returns the element at the specified position in this list.
int size()

Returns the number of elements in this list.

public interface Comparable<T>

int compareTo(T o)

Compares this object with the specified object for order. Returns a negative
integer, zero, or a positive integer as this object is less than, equal to, or
greater than the specified object.

public class Random

Random()

Creates a new random number generator.
int nextInt()

Returns the next pseudorandom, uniformly distributed int value from this
random number generator’s sequence.

public class JPanel extends JComponent extends Container

JPanel()

Creates a new JPanel with a double buffer and a flow layout.

public class JFrame extends Frame extends Window extends Container

JFrame()

Constructs a new frame that is initially invisible.
void setVisible (boolean b)

Shows or hides this Window depending on the value of parameter b.

public abstract class JComponent

protected void paintComponent(Graphics g)

Calls the UI delegate’s paint method, if the UI delegate is non-null.

public class Container extends Component

Component add(Component comp)

Appends the specified component to the end of this container.

public abstract class Component

public void repaint()

Repaints this component.
void setSize(int width, int height)

Resizes this component so that it has width width and height height.

8

public class Graphics

abstract void drawLine(int x1, int y1, int x2, int y2)

Draws a line, using the current color, between the points (x1, y1) and (x2,
y2) in this graphics context’s coordinate system.

public interface MouseMotionListener

void mouseDragged(MouseEvent e)

Invoked when a mouse button is pressed on a component and then dragged.
void mouseMoved(MouseEvent e)

Invoked when the mouse cursor has been moved onto a component but no
buttons have been pushed.

public interface ActionListener

void actionPerformed(ActionEvent e)

Invoked when an action occurs.

public class Timer

Timer(int delay, ActionListener listener)

Creates a Timer and initializes both the initial delay and between-event delay
to delay milliseconds.

void start()

Starts the Timer, causing it to start sending action events to its listeners.

public class MouseEvent

int getX()

Returns the horizontal x position of the event relative to the source compo-
nent.

int getY()

Returns the vertical y position of the event relative to the source component.

public class Point

Point(int x, int y)

Constructs and initializes a point at the specified (x,y) location in the coor-
dinate space.

int x

The X coordinate of this Point.
int y

The Y coordinate of this Point.

