CHALMERS Losningsforslag 1av9

Institutionen fér data- och informationsteknik 2023-10-26
Pelle Evensen, evensen@chalmers.se DATO050
Losningsforslag

Objektorienterad programmering

Version: 2023-10-31 Objektorienterad programmering, DAT050, 23/24 LP1

CHALMERS Lésningsforslag 2av9
Institutionen fér data- och informationsteknik 2023-10-26
Pelle Evensen, evensen@chalmers.se DATO050

Uppgift 1 Objektorientering alimant (12p totalt)
(A) Forklara begreppen lag/hog koppling och kohesion. Beskriv sa vél du kan med exempel varfor kohe-
sion och koppling i nagon mén kan vara bade individuellt hoga/laga.
— Se forelasning 11, sid 4-8, 27.
(B) Forklara kort hur "mutation” kan utforas for icke-muterbara klasser (tink String, BigInteger).
- Se foreldsning 5, sid 25-26.
(C) Forklara skillnaden mellan specifikation och implementation.
— Se forelasning 2, sid 18-20, foreldsning 3, sid 9,
(D) Forklara skillnaden mellan klass- och instansvariabler.

— Se forelasning 3, sid 25-27.

Version: 2023-10-31 Objektorienterad programmering, DAT050, 23/24 LP1

CHALMERS Lésningsforslag 3av9
Institutionen fér data- och informationsteknik 2023-10-26
Pelle Evensen, evensen@chalmers.se DATO050

Uppgift 2 Berakning med memorering (10p)

public class Collatz {
private static final BigInteger THREE = BigInteger.valueOf(3);

static BigInteger nextCollatz(BigInteger v) {
if (!v.testBit(0)) { return v.divide(BigInteger.TW0); }
return v.multiply(THREE).add(BigInteger.ONE);

}

// Ocachad version, inte sa snabb.
public static double getCollatzMeanNaive(int max) {
long cAcc = 0;
for (int 1{ = 1; 1 <= max; i++) {
int count = 0;
BigInteger b = BigInteger.valueOf(1i);
while (!'b.equals(BigInteger.ONE)) {
count++;
b = nextCollatz(b);
}
cAcc += count;

}

return cAcc / (double) max;

// Cachad/memoiserad version, det sékta svaret:

public static double getCollatzMeanCached(int max) {
long cAcc = 0;
final Map<BigInteger, Integer> lookup = new HashMap<>();
lookup.put(BigInteger.ONE, 0);

for (int 1{ = 1; 1 <= max; i++) {
BigInteger b = BigInteger.valueOf(1i);
int count = 0;
while (lookup.get(b) == null) {
count++;
b = nextCollatz(b);
}
count += lookup.get(b);
lookup.put(BigInteger.valueOf(i), count);
cAcc += count;
}

return cAcc / (double) max;

}

Jamférelse, tidsdtgang:
Naive: (10°7.0 values) 27.2338444 s
Cached: (1077.0 values) 5.3229754 s

Version: 2023-10-31 Objektorienterad programmering, DAT050, 23/24 LP1

CHALMERS Lésningsforslag 4av9
Institutionen fér data- och informationsteknik 2023-10-26
Pelle Evensen, evensen@chalmers.se DATO050

Uppgift 3 Tartdiagram (15p totalt)

public class PiePanel extends JPanel {
private final double[] vs; // We need to remember the slice sizes.

// Assume vs != null && vs.length > 0 && all elements of vs are non-negative.
public PiePanel(double[] vs) {
double sum = 0;
for (double e : vs) {
sum += e;
}
this.vs = new double[vs.length];
for (int 1 = 0; 1 < vs.length; i++) {
this.vs[1] = vs[1] / sum;

@Override public void paintComponent(Graphics g) {
super.paintComponent(qg);
// MARGIN could also be @, not very important when posed as an exam question.
final int MARGIN = (int) (Math.max(this.getWidth(), this.getHeight()) * 0.02f);
final int w = this.getWidth() / 2 - MARGIN;
final int h = this.getHeight() / 2 - MARGIN;
double prevAngle = 0;

// Fill all slices.

for (final double element : this.vs) {
g.setColor(Color.getHSBColor((float) (prevAngle / 360.0), 0.9f, 0.9f));
System.out.println(g.getColor() + ” prevAngle: " + prevAngle + "\t” + element * 360);
g.f1llArc(MARGIN, MARGIN, w * 2, h * 2, (int) prevAngle, (int) (element * 360 + 0.5));
prevAngle += element * 360;

// Draw the spokes.
g.setColor(Color.black);
double partSum = 0.0f;
for (final double element : this.vs) {
final double theta = partSum * Math.PI * 2;
g.drawLine(w + MARGIN, h + MARGIN, MARGIN + (int) (w + Math.cos(theta) * w),
MARGIN + (int) (h - Math.sin(theta) * h));
partSum += element;
}
g.setColor(Color.BLACK);

// Draw the enclosing circle.
g.drawOval(MARGIN, MARGIN, this.getWidth() - MARGIN * 2, this.getHeight() - MARGIN * 2);

Version: 2023-10-31 Objektorienterad programmering, DAT050, 23/24 LP1

CHALMERS Lésningsforslag
Institutionen fér data- och informationsteknik 2023-10-26
Pelle Evensen, evensen@chalmers.se DATO050

Bav9

Uppgift 4 Memoryspel (23p totalt)

public class MemoryModel {

private
private
private
private
private

final int[][] cards;
final int width;
final int height;
int score;

int guesses;

public MemoryModel(int width, int height) {
this.cards = new int[height][width];
this.width = width;
this.height = height;

rest

public
if (

art();

final double getScore() {
this.guesses == 0) { return 0; }

return this.score / (double) this.guesses;

public
public
public
public

public

final int getHeight() { return this.height; }

final int getWidth() { return this.width; }

final boolean isGameOver() { return this.score == this.width * this.height; }

int getValue(int x, int y) { return this.cards[y][x]; }

boolean guess(int x1, int y1, int x2, int y2) {

this.guesses++;

if (

this.cards[y1][x1] == this.cards[y2][x2]) {

this.score += 2;
return true;

}

return false;

public void restart() {

this.guesses = this.score = 0;

final List<Integer> cards = new ArrayList<>();

for (int 1 = 0; 1 < this.width * this.height; i++) { cards.add(i / 2);
Collections.shuffle(cards);

for

(int 1 = 0; 1 < this.height; i++) {

for (int j = 0; j < this.width; j++) {

this.cards[1][j] = cards.get(i1 * this.width + j);

}

}

Version: 2023-10-31

Objektorienterad programmering, DAT050, 23/24 LP1

CHALMERS Lésningsforslag 6av9
Institutionen fér data- och informationsteknik 2023-10-26
Pelle Evensen, evensen@chalmers.se DATO050

public class MemoryController extends JPanel implements ActionListener {
private final JLabel scorelabel;
private final MemoryModel model;
private JButton firstButton;
private JButton secondButton;
// There are at least four distinct ways of mapping buttons to coordinates.
// 1: Let this class implement ActionListener and ...

// A: Use setActionCommand with a text string that can be parsed
// as a cooordinate.
// B: Use two maps Map<JButton, Integer>, one for columns and one for rows.

// 2: Let each button have a unique ActionlListener that memorizes the coordinate

// through ...

// A: An anononymous class

// B: A lambda.

// Note that all four versions are given below (there are other possibilities, too).

// If chosing solution 1B:
private final Map<JButton, Integer> rowMap new HashMap<>();
private final Map<JButton, Integer> colMap = new HashMap<>();

public MemoryController(MemoryModel memoryModel) {
this.model = memoryModel;
this.setLayout(new BorderLayout());
final JPanel buttonPanel = new JPanel();
// We need to remember the buttons to reset them when restarting.
final List<JButton> buttons = new ArraylList<>();
buttonPanel.setlLayout(new GridLayout(memoryModel.getHeight(), memoryModel.getWidth()));
for (int r = 0; r < memoryModel.getHeight(); r++) {
for (int ¢ = 0; c < memoryModel.getWidth(); c++) {
final JButton b = new JButton();
// Solution 1A:
b.setActionCommand(r + " " + C);
buttonPanel.add(b);
buttons.add(b);
b.addActionListener(this);

// Solution 1B:
this.colMap.put(b, c);
this.rowMap.put(b, r);

// Solution 2A and 2B:
final int col = c, row = r; // Needs final to use in a lambda or anon. class.

// Solution 2A:
b.addActionListener(e -> handleButton(e, col, row));

// Solution 2B:
b.addActionListener(new ActionListener() {
@Override public void actionPerformed(ActionEvent e) {
handleButton(e, col, row);

1)

Version: 2023-10-31 Objektorienterad programmering, DAT050, 23/24 LP1

CHALMERS Lésningsforslag 7av9
Institutionen fér data- och informationsteknik 2023-10-26
Pelle Evensen, evensen@chalmers.se DATO050

// constructor, continued.
}
resetButtons(buttons);
this.add(BorderLayout.CENTER, buttonPanel);

final JPanel statusPanel = new JPanel();
this.scoreLabel = new JLabel("”0");
updateScorelLabel();
statusPanel.add(this.scorelLabel);

final JButton restartButton = new JButton(”Restart”);

restartButton.addActionListener(e -> {
memoryModel.restart();
MemoryController.this.repaint();
updateScorelLabel();
resetButtons(buttons);

1)

statusPanel.add(restartButton);

this.add(BorderLayout.SOUTH, statusPanel);

private static void resetButtons(List<JButton> buttons) {
final Font bFont = new Font(”Arial”, Font.BOLD, 30);
for (final JButton b : buttons) {

.setText(” ")

.setFont(bFont);

.setBackground(Color.WHITE);

.setEnabled(true);

O T T T

private void updateScorelLabel() {
this.scorelLabel.setText(”Score: " + String.format("”%.2f"”, this.model.getScore()));

}

private int getRow(JButton b) {
// Solution 1A:
final String[] ac = b.getActionCommand().split(” ”);
return Integer.parselnt(ac[0]);

// Solution 1B:
return rowMap.get(b);

private int getCol(JButton b) {
// Solution 1A:
final String[] ac = b.getActionCommand().split(” ");
return Integer.parselnt(ac[1]);

// Solution 1B:
return colMap.get(b);

Version: 2023-10-31 Objektorienterad programmering, DAT050, 23/24 LP1

CHALMERS Lésningsforslag
Institutionen fér data- och informationsteknik 2023-10-26
Pelle Evensen, evensen@chalmers.se DATO050

8av9

// Solution 1A and 1B:
@Override
public void actionPerformed(ActionEvent e) {

if (this.firstButton == null) {
this.firstButton = (JButton) e.getSource();
showButtonValue(this.firstButton);

} else if (this.secondButton == null) {
this.secondButton = (JButton) e.getSource();
showButtonValue(this.secondButton);
if (this.model.guess(getCol(this.firstButton), getRow(this.firstButton),

getCol(this.secondButton), getRow(this.secondButton))) {

this.firstButton.setBackground(Color.GREEN);
this.secondButton.setBackground(Color.GREEN);
this.firstButton.setEnabled(false);
this.secondButton.setEnabled(false);
this.firstButton = null;
this.secondButton = null;

}

updateScorelLabel();

} else { // Two cards already up. Flip them down ...
this.firstButton.setText("");
this.secondButton.setText("”");
this.firstButton = this.secondButton = null;
actionPerformed(e); // and flip up the new card.

// Solution 2A & 2B:
public void handleButton(ActionEvent e, int col, int row) {
if (this.firstButton == null) {
this.firstButton = (JButton) e.getSource();
showButtonValue(this.firstButton, col, row);
} else if (this.secondButton == null) {
this.secondButton = (JButton) e.getSource();
showButtonValue(this.secondButton, col, row);
if (this.model.guess(getCol(this.firstButton), getRow(this.firstButton),
getCol(this.secondButton), getRow(this.secondButton))) {
this.firstButton.setBackground(Color.GREEN);
this.secondButton.setBackground(Color.GREEN);
this.firstButton.setEnabled(false);
this.secondButton.setEnabled(false);
this.firstButton = this.secondButton = null;
}
updateScorelLabel();
} else { // Two cards already up. Flip them down ...
this.firstButton.setText("");
this.secondButton.setText("”");
this.firstButton = null;
this.secondButton = null;
handleButton(e, col, row); // and flip up the new card.

Version: 2023-10-31 Objektorienterad programmering, DAT050, 23/24 LP1

CHALMERS Lésningsforslag 9av9
Institutionen fér data- och informationsteknik 2023-10-26
Pelle Evensen, evensen@chalmers.se DATO050

// Solution 1A and 1B:

private void showButtonValue(JButton b) {
final int row = getRow(b);
final int col = getCol(b);
b.setText(Integer.toString(this.model.getValue(col, row)));

// Solution 2A & 2B:
private void showButtonValue(JButton b, int col, int row) {
b.setText(Integer.toString(this.model.getValue(col, row)));

}

// Demonstration/example main.
// Give number of columns and rows as command line arguments.
public static void main(String[] args) {
if(args.length != 2) {
System.err.println(”Number of columns and rows must be given.”);
System.exit(1);
}
int cols = Integer.parselnt(args[0]);
int rows = Integer.parselnt(args[1]);
if(cols <1 || rows <1 || cols * rows % 2 !=0) {
System.err.println(”Number of columns must be strictly positive and their " +
" product must be even.”);
System.exit(2);
}
final JFrame f = new JFrame(”Memory!”);
final JPanel p new MemoryController(new MemoryModel(cols, rows));
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.add(p);
f.pack();
f.setVisible(true);

Version: 2023-10-31 Objektorienterad programmering, DAT050, 23/24 LP1

