
CHALMERS
Institutionen för data- och informationsteknik
Pelle Evensen, evensen@chalmers.se

Lösningsförslag
2023–10–26
DAT050

1 av 9

Version: 2023–10–31 Objektorienterad programmering, DAT050, 23/24 LP1

Lösningsförslag
Objektorienterad programmering

CHALMERS
Institutionen för data- och informationsteknik
Pelle Evensen, evensen@chalmers.se

Lösningsförslag
2023–10–26
DAT050

2 av 9

Version: 2023–10–31 Objektorienterad programmering, DAT050, 23/24 LP1

Uppgift 1	 Objektorientering allmänt (12p totalt)
(A)	Förklara begreppen låg/hög koppling och kohesion. Beskriv så väl du kan med exempel varför kohe-

sion och koppling i någon mån kan vara både individuellt höga/låga.

	 – Se föreläsning 11, sid 4–8, 27.

(B)	Förklara kort hur ”mutation” kan utföras för icke-muterbara klasser (tänk String, BigInteger).

	 – Se föreläsning 5, sid 25–26.

(C)	Förklara skillnaden mellan specifikation och implementation.

	 – Se föreläsning 2, sid 18–20, föreläsning 3, sid 9,

(D)	Förklara skillnaden mellan klass- och instansvariabler.

	 – Se föreläsning 3, sid 25–27.

CHALMERS
Institutionen för data- och informationsteknik
Pelle Evensen, evensen@chalmers.se

Lösningsförslag
2023–10–26
DAT050

3 av 9

Version: 2023–10–31 Objektorienterad programmering, DAT050, 23/24 LP1

Uppgift 2	 Beräkning med memorering (10p)
public class Collatz {
	 private static final BigInteger THREE = BigInteger.valueOf(3);

	 static BigInteger nextCollatz(BigInteger v) {
		 if (!v.testBit(0)) {			 return v.divide(BigInteger.TWO);		 }
		 return v.multiply(THREE).add(BigInteger.ONE);
	 }

	 // Ocachad version, inte så snabb.
	 public static double getCollatzMeanNaive(int max) {
		 long cAcc = 0;
		 for (int i = 1; i <= max; i++) {
			 int count = 0;
			 BigInteger b = BigInteger.valueOf(i);
			 while (!b.equals(BigInteger.ONE)) {
				 count++;
				 b = nextCollatz(b);
			 }
			 cAcc += count;
		 }
		 return cAcc / (double) max;
	 }
	
	 // Cachad/memoiserad version, det sökta svaret:
	 public static double getCollatzMeanCached(int max) {
		 long cAcc = 0;
		 final Map<BigInteger, Integer> lookup = new HashMap<>();
		 lookup.put(BigInteger.ONE, 0);

		 for (int i = 1; i <= max; i++) {
			 BigInteger b = BigInteger.valueOf(i);
			 int count = 0;
			 while (lookup.get(b) == null) {
				 count++;
				 b = nextCollatz(b);
			 }
			 count += lookup.get(b);
			 lookup.put(BigInteger.valueOf(i), count);
			 cAcc += count;
		 }
		 return cAcc / (double) max;
	 }
}

Jämförelse, tidsåtgång:
Naive: (10^7.0 values) 27.2338444 s
Cached: (10^7.0 values) 5.3229754 s

CHALMERS
Institutionen för data- och informationsteknik
Pelle Evensen, evensen@chalmers.se

Lösningsförslag
2023–10–26
DAT050

4 av 9

Version: 2023–10–31 Objektorienterad programmering, DAT050, 23/24 LP1

Uppgift 3	 Tårtdiagram (15p totalt)
public class PiePanel extends JPanel {
	 private final double[] vs; // We need to remember the slice sizes.

	 // Assume vs != null && vs.length > 0 && all elements of vs are non-negative.
	 public PiePanel(double[] vs) {
		 double sum = 0;
		 for (double e : vs) {
			 sum += e;
		 }
		 this.vs = new double[vs.length];
		 for (int i = 0; i < vs.length; i++) {
			 this.vs[i] = vs[i] / sum;
		 }
	 }

	 @Override public void paintComponent(Graphics g) {
		 super.paintComponent(g);
		 // MARGIN could also be 0, not very important when posed as an exam question.
		 final int MARGIN = (int) (Math.max(this.getWidth(), this.getHeight()) * 0.02f);
		 final int w = this.getWidth() / 2 - MARGIN;
		 final int h = this.getHeight() / 2 - MARGIN;
		 double prevAngle = 0;

		 // Fill all slices.
		 for (final double element : this.vs) {
			 g.setColor(Color.getHSBColor((float) (prevAngle / 360.0), 0.9f, 0.9f));
			 System.out.println(g.getColor() + ” prevAngle: ” + prevAngle + ”\t” + element * 360);
			 g.fillArc(MARGIN, MARGIN, w * 2, h * 2, (int) prevAngle, (int) (element * 360 + 0.5));
			 prevAngle += element * 360;
		 }

		 // Draw the spokes.
		 g.setColor(Color.black);
		 double partSum = 0.0f;
		 for (final double element : this.vs) {
			 final double theta = partSum * Math.PI * 2;
			 g.drawLine(w + MARGIN, h + MARGIN, MARGIN + (int) (w + Math.cos(theta) * w),
					 MARGIN + (int) (h - Math.sin(theta) * h));
			 partSum += element;
		 }
		 g.setColor(Color.BLACK);

		 // Draw the enclosing circle.
		 g.drawOval(MARGIN, MARGIN, this.getWidth() - MARGIN * 2, this.getHeight() - MARGIN * 2);
	 }
}

CHALMERS
Institutionen för data- och informationsteknik
Pelle Evensen, evensen@chalmers.se

Lösningsförslag
2023–10–26
DAT050

5 av 9

Version: 2023–10–31 Objektorienterad programmering, DAT050, 23/24 LP1

Uppgift 4	 Memoryspel (23p totalt)
public class MemoryModel {
	 private final int[][] cards;
	 private final int width;
	 private final int height;
	 private int score;
	 private int guesses;

	 public MemoryModel(int width, int height) {
		 this.cards = new int[height][width];
		 this.width = width;
		 this.height = height;
		 restart();
	 }

	 public final double getScore() {
		 if (this.guesses == 0) {			 return 0;		 }
		 return this.score / (double) this.guesses;
	 }

	 public final int getHeight() {		 return this.height;	 }

	 public final int getWidth() {		 return this.width; 	 }

	 public final boolean isGameOver() {		 return this.score == this.width * this.height;	}

	 public int getValue(int x, int y) {		 return this.cards[y][x]; 	}

	 public boolean guess(int x1, int y1, int x2, int y2) {
		 this.guesses++;
		 if (this.cards[y1][x1] == this.cards[y2][x2]) {
			 this.score += 2;
			 return true;
		 }
		 return false;
	 }

	 public void restart() {
		 this.guesses = this.score = 0;
		 final List<Integer> cards = new ArrayList<>();
		 for (int i = 0; i < this.width * this.height; i++) {			 cards.add(i / 2);		 }
		 Collections.shuffle(cards);
		 for (int i = 0; i < this.height; i++) {
			 for (int j = 0; j < this.width; j++) {
				 this.cards[i][j] = cards.get(i * this.width + j);
			 }
		 }
	 }
}

CHALMERS
Institutionen för data- och informationsteknik
Pelle Evensen, evensen@chalmers.se

Lösningsförslag
2023–10–26
DAT050

6 av 9

Version: 2023–10–31 Objektorienterad programmering, DAT050, 23/24 LP1

public class MemoryController extends JPanel implements ActionListener {
	 private final JLabel scoreLabel;
	 private final MemoryModel model;
	 private JButton firstButton;
	 private JButton secondButton;
	 // There are at least four distinct ways of mapping buttons to coordinates.
	 // 1: Let this class implement ActionListener and ...
	 // 		 A: Use setActionCommand with a text string that can be parsed
	 // 		 as a cooordinate.
	 // 		 B: Use two maps Map<JButton, Integer>, one for columns and one for rows.
	 // 2: Let each button have a unique ActionListener that memorizes the coordinate
	 // 	 through ...
	 // 		 A: An anononymous class
	 // 		 B: A lambda.
	 // Note that all four versions are given below (there are other possibilities, too).

	 // If chosing solution 1B:
	 private final Map<JButton, Integer> rowMap = new HashMap<>();
	 private final Map<JButton, Integer> colMap = new HashMap<>();

	 public MemoryController(MemoryModel memoryModel) {
		 this.model = memoryModel;
		 this.setLayout(new BorderLayout());
		 final JPanel buttonPanel = new JPanel();
		 // We need to remember the buttons to reset them when restarting.
		 final List<JButton> buttons = new ArrayList<>();
		 buttonPanel.setLayout(new GridLayout(memoryModel.getHeight(), memoryModel.getWidth()));
		 for (int r = 0; r < memoryModel.getHeight(); r++) {
			 for (int c = 0; c < memoryModel.getWidth(); c++) {
				 final JButton b = new JButton();
				 // Solution 1A:
				 b.setActionCommand(r + ” ” + c);
				 buttonPanel.add(b);
				 buttons.add(b);
				 b.addActionListener(this);

				 // Solution 1B:
				 this.colMap.put(b, c);
				 this.rowMap.put(b, r);

				 // Solution 2A and 2B:
				 final int col = c, row = r; // Needs final to use in a lambda or anon. class.

				 // Solution 2A:
				 b.addActionListener(e -> handleButton(e, col, row));

				 // Solution 2B:
				 b.addActionListener(new ActionListener() {
					 @Override public void actionPerformed(ActionEvent e) {
						 handleButton(e, col, row);
					 }
				 });
			 }

CHALMERS
Institutionen för data- och informationsteknik
Pelle Evensen, evensen@chalmers.se

Lösningsförslag
2023–10–26
DAT050

7 av 9

Version: 2023–10–31 Objektorienterad programmering, DAT050, 23/24 LP1

	 // constructor, continued.
		 }
		 resetButtons(buttons);
		 this.add(BorderLayout.CENTER, buttonPanel);

		 final JPanel statusPanel = new JPanel();
		 this.scoreLabel = new JLabel(”0”);
		 updateScoreLabel();
		 statusPanel.add(this.scoreLabel);

		 final JButton restartButton = new JButton(”Restart”);
		 restartButton.addActionListener(e -> {
			 memoryModel.restart();
			 MemoryController.this.repaint();
			 updateScoreLabel();
			 resetButtons(buttons);
		 });
		 statusPanel.add(restartButton);

		 this.add(BorderLayout.SOUTH, statusPanel);
	 }

	 private static void resetButtons(List<JButton> buttons) {
		 final Font bFont = new Font(”Arial”, Font.BOLD, 30);
		 for (final JButton b : buttons) {
			 b.setText(” ”);
			 b.setFont(bFont);
			 b.setBackground(Color.WHITE);
			 b.setEnabled(true);
		 }
	 }

	 private void updateScoreLabel() {
		 this.scoreLabel.setText(”Score: ” + String.format(”%.2f”, this.model.getScore()));
	 }

	 private int getRow(JButton b) {
		 // Solution 1A:
		 final String[] ac = b.getActionCommand().split(” ”);
		 return Integer.parseInt(ac[0]);

		 // Solution 1B:
		 return rowMap.get(b);
	 }

	 private int getCol(JButton b) {
		 // Solution 1A:
		 final String[] ac = b.getActionCommand().split(” ”);
		 return Integer.parseInt(ac[1]);

		 // Solution 1B:
		 return colMap.get(b);
	 }

CHALMERS
Institutionen för data- och informationsteknik
Pelle Evensen, evensen@chalmers.se

Lösningsförslag
2023–10–26
DAT050

8 av 9

Version: 2023–10–31 Objektorienterad programmering, DAT050, 23/24 LP1

	 // Solution 1A and 1B:
	 @Override
	 public void actionPerformed(ActionEvent e) {
		 if (this.firstButton == null) {
			 this.firstButton = (JButton) e.getSource();
			 showButtonValue(this.firstButton);
		 } else if (this.secondButton == null) {
			 this.secondButton = (JButton) e.getSource();
			 showButtonValue(this.secondButton);
			 if (this.model.guess(getCol(this.firstButton), getRow(this.firstButton),
					 getCol(this.secondButton), getRow(this.secondButton))) {
				 this.firstButton.setBackground(Color.GREEN);
				 this.secondButton.setBackground(Color.GREEN);
				 this.firstButton.setEnabled(false);
				 this.secondButton.setEnabled(false);
				 this.firstButton = null;
				 this.secondButton = null;
			 }
			 updateScoreLabel();
		 } else { // Two cards already up. Flip them down ...
			 this.firstButton.setText(””);
			 this.secondButton.setText(””);
			 this.firstButton = this.secondButton = null;
			 actionPerformed(e);			 //	and flip up the new card.
		 }
	 }

	 // Solution 2A & 2B:
	 public void handleButton(ActionEvent e, int col, int row) {
		 if (this.firstButton == null) {
			 this.firstButton = (JButton) e.getSource();
			 showButtonValue(this.firstButton, col, row);
		 } else if (this.secondButton == null) {
			 this.secondButton = (JButton) e.getSource();
			 showButtonValue(this.secondButton, col, row);
			 if (this.model.guess(getCol(this.firstButton), getRow(this.firstButton),
					 getCol(this.secondButton), getRow(this.secondButton))) {
				 this.firstButton.setBackground(Color.GREEN);
				 this.secondButton.setBackground(Color.GREEN);
				 this.firstButton.setEnabled(false);
				 this.secondButton.setEnabled(false);
				 this.firstButton = this.secondButton = null;
			 }
			 updateScoreLabel();
		 } else { // Two cards already up. Flip them down ...
			 this.firstButton.setText(””);
			 this.secondButton.setText(””);
			 this.firstButton = null;
			 this.secondButton = null;
			 handleButton(e, col, row); 			 // and flip up the new card.
		 }
	 }

CHALMERS
Institutionen för data- och informationsteknik
Pelle Evensen, evensen@chalmers.se

Lösningsförslag
2023–10–26
DAT050

9 av 9

Version: 2023–10–31 Objektorienterad programmering, DAT050, 23/24 LP1

	 // Solution 1A and 1B:
	 private void showButtonValue(JButton b) {
		 final int row = getRow(b);
		 final int col = getCol(b);
		 b.setText(Integer.toString(this.model.getValue(col, row)));
	 }

	 // Solution 2A & 2B:
	 private void showButtonValue(JButton b, int col, int row) {
		 b.setText(Integer.toString(this.model.getValue(col, row)));
	 }

	 // Demonstration/example main.
	 // Give number of columns and rows as command line arguments.
	 public static void main(String[] args) {
		 if(args.length != 2) {
			 System.err.println(”Number of columns and rows must be given.”);
			 System.exit(1);
		 }
		 int cols = Integer.parseInt(args[0]);
		 int rows = Integer.parseInt(args[1]);
		 if(cols < 1 || rows < 1 || cols * rows % 2 != 0) {
			 System.err.println(”Number of columns must be strictly positive and their ” +
				 ” product must be even.”);
			 System.exit(2);
		 }
		 final JFrame f = new JFrame(”Memory!”);
		 final JPanel p = new MemoryController(new MemoryModel(cols, rows));
		 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
		 f.add(p);
		 f.pack();
		 f.setVisible(true);
	 }
}

