Data och Informationsteknik / Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
Ansvarig larare: Magnus Myréen

DAT050 Objektorienterad programmering
Tentamen, onsdag, 2023-08-23, 14:00-18:00

Vitsordsgranser: 3=24p, 4=36p, 5=48p, max 60p.

Kom ihag att inte fastna pa en uppgift. Bestam i forvag din egen tidsgrans per uppgift. Lycka till!

Uppgift 1: [5 poang totalt] grunder i objektorientering och Java

A. Forklara kort vad det objektorienterade synsattet ar. Hur ar det man strukturerar
objektorienterade program? [2 poang]

B. Skriv ett kort kodexempel som visar vad lyssnare ar i Java. Forklara kort din kod och vad
lyssnaren gor. [3 poang]

Uppgift 2: [15 poang totalt] att skriva klass, anvdndning av standard klasser

Denna uppgift handlar om att implementera en klass BiddingMarket som fungerar som en
databas for information om budgivning for saker folk kdper eller saljer.
A. Skriv all kod som behdvs for en klass som har féljande funktionalitet. [10 podng]

. Nar man skapar en ny instans av klassen bor den representera en tom databas.

¢ Man ska kunna l4gga till en ny sak som folk kan ge bud pa. Saken bor ha ett namn
och ett minimum pris.

public void addItem(String itemName, int minPrice)

. Det ska finnas en metod for att 1agga till ett nytt bud for en sak (itemName). Denna

metod ska kasta en exception ifall den saken inte finns att ge bud p3, det redan finns
ett hogre bud for den saken, eller budet dr under minimum priset.

public void bidForItem(String itemName, int bidPrice)

. Skriv en metod som returnerar all bud hittills for en sak.

public List<Integer> getBidHistory(String itemName)

Obs: Anta att varje sak har ett unikt namn (itemName).

Tips: Det ar lattast att 16sa uppgiften med hjalp av en hjélpklass vars instanser innehaller
all information (minimum pris och budgivnings historik) fér en sak.

B. Implementera printBiddingMarket sa att den skriver ut en en rad per sak i databasen.
Raden bor ha sakens namn, budhistorik och minimum pris. [5 poang]



Uppgift 3: [15 poang] interface, iterators, listor

Denna uppgift handlar om iterators. Java har ett standard Iterator interface med metoder
hasNext och next, som man kan anvdnda for att stega (framat) igenom en samling element.

Foljande testkod skriver ut innehdllet av en iterator it.

System.out.print("<");
while (it.hasNext()) {
System.out.print(it.next());
if (it.hasNext()) {
System.out.print(",");
}

}
System.out.print(">");

Exempel: koden ovan skriver ut “<1,2,3>" for en iterator it skapad fran en lista som bestar

av tre element: 1,2,3. Vi sager att iteratorn it representerar <1,2,3>.

A. Implementera EmptyIterator<A> som alltid representerar <>. [3 podng]
public class EmptyIterator<A> implements Iterator<A> {
public EmptyIterator() { ... }

}

B. Implementera OneIterator<A> som alltid representerar en iterator som endast
innehaller ett element: det elementet som gavs till konstruktorn. [4 podng]

public class OneIterator<A> implements Iterator<A> {

public OneIterator(A a) { ... }

}

Nar testkoden ovan kor pa it lika med new OneIterator(5) bor den skriva ut <5>.

C. Implementera AppendIterator<A> som alltid representerar alla element av en iterator

it1 och sedan alla element av en annan it2. Givet en iterator som representerar <1,2,3>
och en som representerar <4,5> bor AppendIterator representera <1,2,3,4,5>. [4 podng]

public class AppendIterator<A> implements Iterator<A> {
public AppendIterator(Iterator<A> itl, Iterator<A> it2) { ... }

}

D. Implementera ReverseIterator<A> som alltid representerar alla element av en given

iterator it men i motsatt ordning. Givet en iterator som representerar <1,2,3> bor
ReverseIterator representera <3,2,1>. [4 poang]

public class ReverselIterator<A> implements Iterator<A> {

public ReverseIterator(Iterator<A> it) { ... }

Obs: Du kan anta i alla delar att indata inte ar null och att alla iterators ar dndliga.



Uppgift 4: [10 poang totalt] immutable, standard klasser
A. Forklara begreppet immutable i (objektorienterad) programmering. [2 podng]

B. Javas standard bibliotek definierar ett List interface. En del av den definitionen ar visad

nedan. Forklara varfor det inte gar att implementera detta interface med en immutable
klass. [3 podng]

Interface List<E>
boolean add(E e)
Appends the specified element to the end of this list.
Returns true if this collection changed as a result of the call.
Iterator<E> iterator()
Returns an iterator over the elements in this list in proper sequence.
E get(int index)
Returns the element at the specified position in this list.
int size()
Returns the number of elements in this list.

C. Né&r man anvinder HashMap<K,V> da brukar K vara klasser vars implementationer ar

immutable. Forklara noggrant varfor. Vad kan ga fel ifall man muterar fér mycket i klassen
som anvands som K i HashMap<K, V>? [5 poang]

Tips: Foljande ar text fran Javas API dokumentation.

Class Object
public int hashCode()
Returns a hash code value for the object. This method is supported
for the benefit of hash tables such as those provided by HashMap.
The general contract of hashCode is: Whenever it is invoked on the
same object more than once during an execution of a Java application,
the hashCode method must consistently return the same integer [..]

For fulla poang bor du forklara varfor det ar sa viktigt att hashCode funktionen returnera
samma varde: “consistently return the same integer”.

Uppgift 5: [15 poang] arv, anvdndning av standard bibliotek

Din uppgift ar att implementera en Kklass CountButton sd att den ar precis som en JButton
forutom att texten pa knappen alltid inkluderar hur manga gdnger man klickat pa knappen.

Om man skapar en ny CountButton med texten “Click me”, dvs

JButton b = new CountButton("Click me");

da ska texten pa knappen vara “Click me (0 clicks so far)”. Om man sedan klickar pa
knappen ska texten pa knappen automatiskt uppdateras till “Click me (1 clicks so far)”. Om
man sedan klickar en gang till sa da ska det sta “Click me (2 clicks so far)” pa knappen.

Obs: Knappens count ska synas ocksa fast anvandaren anropar pa setText for knappen.
T.ex. om anvindaren kor (efter tva klick)

b.setText(“New text here");

da ska knappen ha texten “New text here (2 clicks so far)”.



Utdrag ur Javas API. Obs: Man behover inte anvanda alla dessa klasser. Man far ocksa anvanda annat fran Javas API

Class AbstractButton
void setText(String text)
Sets the button's text.
Interface ActionListener
void actionPerformed(ActionEvent e)
Invoked when an action occurs.
Class Component extends Object
void repaint()
Repaints this component.
Class HashMap<K,V> extends AbstractMap<K,V> extends Object implements Map<K,V>
HashMap ()
Constructs an empty HashMap with the default initial capacity (16) and the
default load factor (0.75).
V get(Object key)
Returns the value to which the specified key is mapped, or null if this map
contains no mapping for the key.
V put(K key, V value)
Associates the specified value with the specified key in this map.
Class IllegalArgumentException extends Exception
IllegalArgumentException()
Creates a new IllegalArgumentException.
Interface Iterator<E>
boolean hasNext()
Returns true if the iteration has more elements.
E next()
Returns the next element in the iteration.
Class JButton extends AbstractButton extends .. extends Object
JButton(String text)
Creates a button with text.
Class JComponent extends Container extends Component extends Object
int getHeight()
Returns the current height of this component.
int getWidth()
Returns the current width of this component.
void paintComponent(Graphics g)
Calls the UI delegate's paint method, if the UI delegate is non-null.
Class JFrame extends Frame extends Container extends Component extends Object
JFrame(String title)
Creates a new, initially invisible Frame with the specified title.
void setLayout(LayoutManager manager)
Sets the LayoutManager.
Class JPanel extends JComponent extends Container extends Component extends Object
JPanel()
Creates a new JPanel with a double buffer and a flow layout.
Interface List<E>
boolean add(E e)
Appends the specified element to the end of this list.
Iterator<E> iterator()
Returns an iterator over the elements in this list in proper sequence.
E get(int index)
Returns the element at the specified position in this list.
int size()
Returns the number of elements in this list.
Class LinkedList<E> extends AbstractCollection<E> extends Object implements List<E>
LinkedList()
Constructs an empty list.
Class Object
boolean equals(Object obj)
Indicates whether some other object is "equal to" this one.



