
Data	och	Informationsteknik	/	Computer	Science	and	Engineering

Chalmers	University	of	Technology	and	University	of	Gothenburg

Ansvarig	lärare:	Magnus	Myréen


DAT050	Objektorienterad	programmering


Tentamen,	onsdag,	2023-08-23,	14:00-18:00


Vitsordsgränser:		3=24p,	4=36p,	5=48p,	max	60p.


Kom	ihåg	att	inte	fastna	på	en	uppgift.	Bestäm	i	förväg	din	egen	tidsgräns	per	uppgift.	Lycka	till!		


Uppgift	1:	[5	poäng	totalt]	grunder	i	objektorientering	och	Java


A. Förklara	kort	vad	det	objektorienterade	synsättet	är.	Hur	är	det	man	strukturerar	
objektorienterade	program?	[2	poäng]


B. Skriv	ett	kort	kodexempel	som	visar	vad	lyssnare	är	i	Java.	Förklara	kort	din	kod	och	vad	
lyssnaren	gör.	[3	poäng]


Uppgift	2:	[15	poäng	totalt]	att	skriva	klass,	användning	av	standard	klasser


Denna	uppgift	handlar	om	att	implementera	en	klass	BiddingMarket	som	fungerar	som	en	
databas	för	information	om	budgivning	för	saker	folk	köper	eller	säljer.


A. Skriv	all	kod	som	behövs	för	en	klass	som	har	följande	funktionalitet.	[10	poäng]


• När	man	skapar	en	ny	instans	av	klassen	bör	den	representera	en	tom	databas.


• Man	ska	kunna	lägga	till	en	ny	sak	som	folk	kan	ge	bud	på.	Saken	bör	ha	ett	namn	
och	ett	minimum	pris.


public	void	addItem(String	itemName,	int	minPrice)


• Det	ska	finnas	en	metod	för	att	lägga	till	ett	nytt	bud	för	en	sak	(itemName).	Denna	
metod	ska	kasta	en	exception	ifall	den	saken	inte	finns	att	ge	bud	på,	det	redan	finns	
ett	högre	bud	för	den	saken,	eller	budet	är	under	minimum	priset.


public	void	bidForItem(String	itemName,	int	bidPrice)	


• Skriv	en	metod	som	returnerar	all	bud	hittills	för	en	sak.


public	List<Integer>	getBidHistory(String	itemName)


Obs:		Anta	att	varje	sak	har	ett	unikt	namn	(itemName).


Tips:		Det	är	lättast	att	lösa	uppgiften	med	hjälp	av	en	hjälpklass	vars	instanser	innehåller	
all	information	(minimum	pris	och	budgivnings	historik)	för	en	sak.


B. Implementera	printBiddingMarket	så	att	den	skriver	ut	en	en	rad	per	sak	i	databasen.	
Raden	bör	ha	sakens	namn,	budhistorik	och	minimum	pris.	[5	poäng]




Uppgift	3:	[15	poäng]	interface,	iterators,	listor


Denna	uppgift	handlar	om	iterators.	Java	har	ett	standard	Iterator	interface	med	metoder	
hasNext	och	next,	som	man	kan	använda	för	att	stega	(framåt)	igenom	en	samling	element.	


Följande	testkod	skriver	ut	innehållet	av	en	iterator	it.	


								System.out.print("<");

								while	(it.hasNext())	{

												System.out.print(it.next());

												if	(it.hasNext())	{

																System.out.print(",");

												}

								}

								System.out.print(">");


Exempel:	koden	ovan	skriver	ut	“<1,2,3>”	för	en	iterator	it	skapad	från	en	lista	som	består	
av	tre	element:	1,2,3.	Vi	säger	att	iteratorn	it	representerar	<1,2,3>.	


A. Implementera	EmptyIterator<A>	som	alltid	representerar	<>.	[3	poäng]


public	class	EmptyIterator<A>	implements	Iterator<A>	{

				...

				public	EmptyIterator()	{	...	}

				...

}


B. Implementera	OneIterator<A>	som	alltid	representerar	en	iterator	som	endast	
innehåller	ett	element:	det	elementet	som	gavs	till	konstruktorn.	[4	poäng]


public	class	OneIterator<A>	implements	Iterator<A>	{

				...

				public	OneIterator(A	a)	{	...	}

				...

}


När	testkoden	ovan	kör	på	it	lika	med	new	OneIterator(5)	bör	den	skriva	ut	<5>.


C. Implementera	AppendIterator<A>	som	alltid	representerar	alla	element	av	en	iterator	
it1	och	sedan	alla	element	av	en	annan	it2.	Givet	en	iterator	som	representerar	<1,2,3>	
och	en	som	representerar	<4,5>	bör	AppendIterator	representera	<1,2,3,4,5>.	[4	poäng]


public	class	AppendIterator<A>	implements	Iterator<A>	{

				...

				public	AppendIterator(Iterator<A>	it1,	Iterator<A>	it2)	{	...	}

				...

}


D. Implementera	ReverseIterator<A>	som	alltid	representerar	alla	element	av	en	given	
iterator	it	men	i	motsatt	ordning.	Givet	en	iterator	som	representerar	<1,2,3>	bör	
ReverseIterator	representera	<3,2,1>.	[4	poäng]


public	class	ReverseIterator<A>	implements	Iterator<A>	{

				...

				public	ReverseIterator(Iterator<A>	it)	{	...	}

				...

}


Obs:	Du	kan	anta	i	alla	delar	att	indata	inte	är	null	och	att	alla	iterators	är	ändliga. 



Uppgift	4:	[10	poäng	totalt]	immutable,	standard	klasser


A. Förklara	begreppet	immutable	i	(objektorienterad)	programmering.	[2	poäng]


B. Javas	standard	bibliotek	definierar	ett	List	interface.	En	del	av	den	definitionen	är	visad	
nedan.	Förklara	varför	det	inte	går	att	implementera	detta	interface	med	en	immutable	
klass.	[3	poäng]


Interface	List<E>

	 boolean	add(E	e)

	 	 Appends	the	specified	element	to	the	end	of	this	list.

	 	 Returns	true	if	this	collection	changed	as	a	result	of	the	call.

	 Iterator<E>	iterator()

	 	 Returns	an	iterator	over	the	elements	in	this	list	in	proper	sequence.

	 E	get(int	index)

	 	 Returns	the	element	at	the	specified	position	in	this	list.

	 int	size()

	 	 Returns	the	number	of	elements	in	this	list.


C. När	man	använder	HashMap<K,V>	då	brukar	K	vara	klasser	vars	implementationer	är	
immutable.	Förklara	noggrant	varför.	Vad	kan	gå	fel	ifall	man	muterar	för	mycket	i	klassen		
som	används	som	K	i	HashMap<K,V>?	[5	poäng]


Tips:	Följande	är	text	från	Javas	API	dokumentation.


Class	Object

	 public	int	hashCode()


Returns	a	hash	code	value	for	the	object.	This	method	is	supported	
for	the	benefit	of	hash	tables	such	as	those	provided	by	HashMap.

The	general	contract	of	hashCode	is:	Whenever	it	is	invoked	on	the	
same	object	more	than	once	during	an	execution	of	a	Java	application,	
the	hashCode	method	must	consistently	return	the	same	integer	[…]


För	fulla	poäng	bör	du	förklara	varför	det	är	så	viktigt	att	hashCode	funktionen	returnera	
samma	värde:	“consistently	return	the	same	integer”.


Uppgift	5:	[15	poäng]	arv,	användning	av	standard	bibliotek


Din	uppgift	är	att	implementera	en	klass	CountButton	så	att	den	är	precis	som	en	JButton	
förutom	att	texten	på	knappen	alltid	inkluderar	hur	många	gånger	man	klickat	på	knappen.


Om	man	skapar	en	ny	CountButton	med	texten	“Click	me”,	dvs	


								JButton	b	=	new	CountButton("Click	me");


då	ska	texten	på	knappen	vara	“Click	me	(0	clicks	so	far)”.	Om	man	sedan	klickar	på	
knappen	ska	texten	på	knappen	automatiskt	uppdateras	till	“Click	me	(1	clicks	so	far)”.	Om	
man	sedan	klickar	en	gång	till	så	då	ska	det	stå	“Click	me	(2	clicks	so	far)”	på	knappen.


Obs:		Knappens	count	ska	synas	också	fast	användaren	anropar	på	setText	för	knappen.	
T.ex.	om	användaren	kör	(efter	två	klick)


								b.setText(“New	text	here");


	då	ska	knappen	ha	texten	“New	text	here	(2	clicks	so	far)”. 



Utdrag	ur	Javas	API.												Obs:	Man	behöver	inte	använda	alla	dessa	klasser.	Man	får	också	använda	annat	från	Javas	API.	


Class	AbstractButton

void	setText(String	text)


Sets	the	button's	text.

Interface	ActionListener

void	actionPerformed(ActionEvent	e)


Invoked	when	an	action	occurs.

Class	Component	extends	Object

void	repaint()


Repaints	this	component.

Class	HashMap<K,V>	extends	AbstractMap<K,V>	extends	Object	implements	Map<K,V>

HashMap()


Constructs	an	empty	HashMap	with	the	default	initial	capacity	(16)	and	the	
default	load	factor	(0.75).


V	get(Object	key)

Returns	the	value	to	which	the	specified	key	is	mapped,	or	null	if	this	map	
contains	no	mapping	for	the	key.


V	put(K	key,	V	value)

Associates	the	specified	value	with	the	specified	key	in	this	map.


Class	IllegalArgumentException	extends	Exception

IllegalArgumentException()


Creates	a	new	IllegalArgumentException.

Interface	Iterator<E>

boolean	hasNext()


Returns	true	if	the	iteration	has	more	elements.

E	next()


Returns	the	next	element	in	the	iteration.

Class	JButton	extends	AbstractButton	extends	…	extends	Object

JButton(String	text)


Creates	a	button	with	text.

Class	JComponent	extends	Container	extends	Component	extends	Object

int	getHeight()


Returns	the	current	height	of	this	component.

int	getWidth()


Returns	the	current	width	of	this	component.	

void	paintComponent(Graphics	g)


Calls	the	UI	delegate's	paint	method,	if	the	UI	delegate	is	non-null.

Class	JFrame	extends	Frame	extends	Container	extends	Component	extends	Object

JFrame(String	title)


Creates	a	new,	initially	invisible	Frame	with	the	specified	title.

void	setLayout(LayoutManager	manager)


Sets	the	LayoutManager.

Class	JPanel	extends	JComponent	extends	Container	extends	Component	extends	Object

JPanel()


Creates	a	new	JPanel	with	a	double	buffer	and	a	flow	layout.

Interface	List<E>

boolean	add(E	e)


Appends	the	specified	element	to	the	end	of	this	list.

Iterator<E>	iterator()


Returns	an	iterator	over	the	elements	in	this	list	in	proper	sequence.

E	get(int	index)


Returns	the	element	at	the	specified	position	in	this	list.

int	size()


Returns	the	number	of	elements	in	this	list.

Class	LinkedList<E>	extends	AbstractCollection<E>	extends	Object	implements	List<E>

LinkedList()


Constructs	an	empty	list.

Class	Object

boolean	equals(Object	obj)


Indicates	whether	some	other	object	is	"equal	to"	this	one.


