Data och Informationsteknik / Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
Ansvarig larare: Magnus Myréen

DAT050 Objektorienterad programmering
Modellsvar for tentamen, onsdag, 2023-08-23, 14:00-18:00

Vitsordsgranser: 3=24p, 4=36p, 5=48p, max 60p.

Kom ihag att inte fastna pa en uppgift. Bestam i forvag din egen tidsgrans per uppgift. Lycka till!

Modellsvar for Uppgift 1: [5 poang totalt] grunder i objektorientering och Java

A. Tobjektorienterad programmering ar datan det centrala och funktioner som manipulerar
datan hdnger med data. Datan och datans funktioner lever i objekt. Valdefinierade
granssnitt mellan insidan och utsidan av objekt ar viktigt fér strukturen av
objektorienterade program.

B. Har ar kod som kopplar en lyssnare till en knapp. Lyssnaren ar ett objekt som har en
funktion actionPerformed som anropas varje gang knappen trycks.

JButton b = new JButton("Hi");
b.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.out.println("Button clicked!");

1)



Modellsvar for Uppgift 2: [15 podng totalt] att skriva klass, anvdndning av standard klasser

A.
public class BiddingMarket {

private HashMap<String,ItemInfo> data;

public BiddingMarket() {
data = new HashMap<String,ItemInfo>();

}

public void addItem(String itemName, int minPrice) {
ItemInfo ii = data.get(itemName);
if (ii !'= null) {
throw new IllegalArgumentException("Item already exists");
}

data.put(itemName,new ItemInfo(itemName,minPrice));

}

private ItemInfo getInfo(String itemName) {
ItemInfo ii = data.get(itemName);
if (ii == null) {
throw new IllegalArgumentException("No such item");
}

return ii;

}

public void bidForItem(String itemName, int bidPrice) {
getInfo(itemName).bid(bidPrice);

}

public List<Integer> getBidHistory(String itemName) {
return getInfo(itemName).getBids();

}
}

public class ItemInfo {

private String itemName;
private int minPrice;
private List<Integer> bids; // latest is last

public ItemInfo(String itemName, int minPrice) {
this.itemName = itemName;
this.minPrice = minPrice;
bids = new LinkedList<Integer>();
}
public List<Integer> getBids() {
return bids; // might want to clone the list here

}

public void bid(int bidPrice) {
int min = minPrice;
if (bids.size() > 0) {
min = bids.get(bids.size()-1);
}
if (bidPrice < min) {
throw new IllegalArgumentException("Too low");

}
bids.add(bidPrice);



in BiddingMarket:

public void printBiddingMarket() {
for (ItemInfo item : data.values()) {
item.print();
}
}

in ItemInfo:

public void print() {
String str = itemName;
str += " minPrice=";
str += String.valueOf(minPrice);
str += " bids=";
for(Integer i : bids) {
str += String.valueOf(i);

str += ",";

}
System.out.println(str);



Modellsvar for Uppgift 3: [15 podng] interface, iterators, listor

A.

public class EmptyIterator<A> implements Iterator<A> {
public EmptyIterator() { }

public boolean hasNext() {
return false;

}

public A next() {
return null;

}

public class OneIterator<A> implements Iterator<A> {

private A a;
private boolean hasLeft = true;

public OneIterator(A a) {
this.a = a;

}

public boolean hasNext() {
if (hasLeft) {
hasLeft = false;
return true;
} else {
return false;
}
}

public A next() {
return a;

}



public class AppendIterator<A> implements Iterator<A> {

private Iterator<A> a;
private Iterator<A> b;

public AppendIterator(Iterator<A> a,Iterator<A> b) {
this.a = a;
this.b = b;

}

public boolean hasNext() {
return a.hasNext() || b.hasNext();

}

public A next() {
if (a.hasNext()) {
return a.next();
} else {
return b.next();

}



public class ReverseIterator<A> implements Iterator<A> {
private Iterator<A> a;

public ReverseIterator(Iterator<A> it) {
List<A> 1 = new LinkedList<A>();
while (it.hasNext()) {
l.add(@,it.next()); // insert element at front

}

this.a = l.iterator();

}

public boolean hasNext() {
return a.hasNext();

}

public A next() {
return a.next();

}

En annan 16sning:

public class ReverselIterator<A> implements Iterator<A> {

private List<A> 1 = new LinkedList<A>();
private int index;

public ReverseIterator(Iterator<A> it) {
while (it.hasNext()) {
l.add(it.next());

}

index = l.size(); // one past last element

}

public boolean hasNext() {
return (@ < index);

}

public A next() {
if (@ < index) { index--; }
return 1l.get(index);



Modellsvar for Uppgift 4: [10 podng totalt] immutable, standard klasser

A. Ett objekt 4r immutable om den inte gdr att dndra pa efter att den har skapats. Vid
operationer som skulle dndra pa objektet skapas istéllet nya objekt. Standard klasserna
String och Integer ar immutable.

B. Man ser fran typsignaturen for add metoden att tanken ar att add dndrar pa objektet. Det
gar inte att implementera add metoden i en immutable klass for att typsignaturen inte
tilldter en att returnera en ny lista.

C. Dokumentationen visar tydligt att HashMap implementationen litar pa att viardet av
hashCode funktionen inte dndrar sig. Med andra ord: HashMap ar implementerat med
antagandet att hashCode funktionen alltid returnerar samma varde for samma objekt.
Internt organiserar en HashMap all sin data i luckor enligt hashCode vardet fér nycklarna.
Om ett objekt i luckan for hashCode varden 3 plotsligt dndras till hashCode véirdet 5 da
kommer objektet att ligga i fel lucka och HashMap koden kommer inte att titta i ratt lucka.

Modellsvar for Uppgift 5: [15 poang] arv, anvidndning av standard bibliotek

public class CountButton extends JButton {

private int clickCount = 0;
private String text;

public CountButton(String text) {
super(text); // anropar pa setText nedan
addActionListener(e -> { clickCount++; updateText(); });

}

private void updateText() {
super.setText(text + " (" + clickCount + " clicks so far)");

}

public void setText(String text) {
this.text = text;
updateText();

Koden ovan ar tillracklig for fulla poang, men hér ar lite test kod:

public static void main(String[] args) {
JFrame ¥ = new JFrame();
JPanel p = new JPanel();
JButton b = new CountButton("Click me");
p.add(b);
f.add(p);
f.pack();
f.setVisible(true);



