
Data	och	Informationsteknik	/	Computer	Science	and	Engineering

Chalmers	University	of	Technology	and	University	of	Gothenburg

Ansvarig	lärare:	Magnus	Myréen

DAT050	Objektorienterad	programmering

Modellsvar	för	tentamen,	onsdag,	2023-08-23,	14:00-18:00

Vitsordsgränser:		3=24p,	4=36p,	5=48p,	max	60p.

Kom	ihåg	att	inte	fastna	på	en	uppgift.	Bestäm	i	förväg	din	egen	tidsgräns	per	uppgift.	Lycka	till!		

Modellsvar	för	Uppgift	1:	[5	poäng	totalt]	grunder	i	objektorientering	och	Java

A. I	objektorienterad	programmering	är	datan	det	centrala	och	funktioner	som	manipulerar	
datan	hänger	med	data.	Datan	och	datans	funktioner	lever	i	objekt.	Väldefinierade	
gränssnitt	mellan	insidan	och	utsidan	av	objekt	är	viktigt	för	strukturen	av	
objektorienterade	program.

B. Här	är	kod	som	kopplar	en	lyssnare	till	en	knapp.	Lyssnaren	är	ett	objekt	som	har	en	
funktion	actionPerformed	som	anropas	varje	gång	knappen	trycks.	

								JButton	b	=	new	JButton("Hi");

								b.addActionListener(new	ActionListener()	{

																								public	void	actionPerformed(ActionEvent	e)	{

																												System.out.println("Button	clicked!");

	 	 	 }

												});

Modellsvar	för	Uppgift	2:	[15	poäng	totalt]	att	skriva	klass,	användning	av	standard	klasser

A.
public	class	BiddingMarket	{

				private	HashMap<String,ItemInfo>	data;

				public	BiddingMarket()	{

								data	=	new	HashMap<String,ItemInfo>();

				}

				public	void	addItem(String	itemName,	int	minPrice)	{

								ItemInfo	ii	=	data.get(itemName);

								if	(ii	!=	null)	{

												throw	new	IllegalArgumentException("Item	already	exists");

								}

								data.put(itemName,new	ItemInfo(itemName,minPrice));

				}

				private	ItemInfo	getInfo(String	itemName)	{

								ItemInfo	ii	=	data.get(itemName);

								if	(ii	==	null)	{

												throw	new	IllegalArgumentException("No	such	item");

								}

								return	ii;

				}

				public	void	bidForItem(String	itemName,	int	bidPrice)	{

								getInfo(itemName).bid(bidPrice);

				}

				public	List<Integer>	getBidHistory(String	itemName)	{

								return	getInfo(itemName).getBids();

				}

}

public	class	ItemInfo	{

				private	String	itemName;

				private	int	minPrice;

				private	List<Integer>	bids;	//	latest	is	last

				public	ItemInfo(String	itemName,	int	minPrice)	{

								this.itemName	=	itemName;

								this.minPrice	=	minPrice;

								bids	=	new	LinkedList<Integer>();

				}

				public	List<Integer>	getBids()	{

								return	bids;	//	might	want	to	clone	the	list	here

				}

				public	void	bid(int	bidPrice)	{

								int	min	=	minPrice;

								if	(bids.size()	>	0)	{

												min	=	bids.get(bids.size()-1);

								}

								if	(bidPrice	<	min)	{

												throw	new	IllegalArgumentException("Too	low");

								}

								bids.add(bidPrice);

				}

} 

B.

in	BiddingMarket:

				public	void	printBiddingMarket()	{

								for	(ItemInfo	item	:	data.values())	{

												item.print();

								}

				}

in	ItemInfo:

				public	void	print()	{

								String	str	=	itemName;

								str	+=	"	minPrice=";

								str	+=	String.valueOf(minPrice);

								str	+=	"	bids=";

								for(Integer	i	:	bids)	{

												str	+=	String.valueOf(i);

												str	+=	",";

								}

								System.out.println(str);

				} 

Modellsvar	för	Uppgift	3:	[15	poäng]	interface,	iterators,	listor

A.

public	class	EmptyIterator<A>	implements	Iterator<A>	{

				public	EmptyIterator()	{	}

				public	boolean	hasNext()	{

								return	false;

				}

				public	A	next()	{

								return	null;

				}

}

B.

public	class	OneIterator<A>	implements	Iterator<A>	{

				private	A	a;

				private	boolean	hasLeft	=	true;

				public	OneIterator(A	a)	{

								this.a	=	a;

				}

				public	boolean	hasNext()	{

								if	(hasLeft)	{

												hasLeft	=	false;

												return	true;

								}	else	{

												return	false;

								}

				}

				public	A	next()	{

								return	a;

				}

}

C.

public	class	AppendIterator<A>	implements	Iterator<A>	{

				private	Iterator<A>	a;

				private	Iterator<A>	b;

				public	AppendIterator(Iterator<A>	a,Iterator<A>	b)	{

								this.a	=	a;

								this.b	=	b;

				}

				public	boolean	hasNext()	{

								return	a.hasNext()	||	b.hasNext();

				}

				public	A	next()	{

								if	(a.hasNext())	{

												return	a.next();

								}	else	{

												return	b.next();

								}

				}

}

D.

public	class	ReverseIterator<A>	implements	Iterator<A>	{

				private	Iterator<A>	a;

				public	ReverseIterator(Iterator<A>	it)	{

								List<A>	l	=	new	LinkedList<A>();

								while	(it.hasNext())	{

												l.add(0,it.next());	//	insert	element	at	front

								}

								this.a	=	l.iterator();

				}

				public	boolean	hasNext()	{

								return	a.hasNext();

				}

				public	A	next()	{

								return	a.next();

				}

}

En	annan	lösning:

public	class	ReverseIterator<A>	implements	Iterator<A>	{

				private	List<A>	l	=	new	LinkedList<A>();

				private	int	index;

				public	ReverseIterator(Iterator<A>	it)	{

								while	(it.hasNext())	{

												l.add(it.next());

								}

								index	=	l.size();	//	one	past	last	element

				}

				public	boolean	hasNext()	{

								return	(0	<	index);

				}

				public	A	next()	{

								if	(0	<	index)	{	index--;	}

								return	l.get(index);

				}

}

Modellsvar	för	Uppgift	4:	[10	poäng	totalt]	immutable,	standard	klasser

A. Ett	objekt	är	immutable	om	den	inte	går	att	ändra	på	efter	att	den	har	skapats.	Vid	
operationer	som	skulle	ändra	på	objektet	skapas	istället	nya	objekt.	Standard	klasserna	
String	och	Integer	är	immutable.

B. Man	ser	från	typsignaturen	för	add	metoden	att	tanken	är	att	add	ändrar	på	objektet.	Det	
går	inte	att	implementera	add	metoden	i	en	immutable	klass	för	att	typsignaturen	inte	
tillåter	en	att	returnera	en	ny	lista.

C. Dokumentationen	visar	tydligt	att	HashMap	implementationen	litar	på	att	värdet	av	
hashCode	funktionen	inte	ändrar	sig.	Med	andra	ord:	HashMap	är	implementerat	med	
antagandet	att	hashCode	funktionen	alltid	returnerar	samma	värde	för	samma	objekt.	
Internt	organiserar	en	HashMap	all	sin	data	i	luckor	enligt	hashCode	värdet	för	nycklarna.	
Om	ett	objekt	i	luckan	för	hashCode	värden	3	plötsligt	ändras	till	hashCode	värdet	5	då	
kommer	objektet	att	ligga	i	fel	lucka	och	HashMap	koden	kommer	inte	att	titta	i	rätt	lucka.

Modellsvar	för	Uppgift	5:	[15	poäng]	arv,	användning	av	standard	bibliotek

public	class	CountButton	extends	JButton	{

				private	int	clickCount	=	0;

				private	String	text;

				public	CountButton(String	text)	{

								super(text);	//	anropar	på	setText	nedan

								addActionListener(e	->	{	clickCount++;	updateText();	});

				}

				private	void	updateText()	{

								super.setText(text	+	"	("	+	clickCount	+	"	clicks	so	far)");

				}

				public	void	setText(String	text)	{

								this.text	=	text;

								updateText();

				}

}

Koden	ovan	är	tillräcklig	för	fulla	poäng,	men	här	är	lite	test	kod:

				public	static	void	main(String[]	args)	{

								JFrame	f	=	new	JFrame();

								JPanel	p	=	new	JPanel();

								JButton	b	=	new	CountButton("Click	me");

								p.add(b);

								f.add(p);

								f.pack();

								f.setVisible(true);

				}

