
Data	och	Informationsteknik	/	Computer	Science	and	Engineering

Chalmers	University	of	Technology	and	University	of	Gothenburg

Ansvarig	lärare:	Magnus	Myréen

DAT050	Objektorienterad	programmering

Tentamen,	tisdag,	2023-01-03,	08:30-12:30

Vitsordsgränser:		3=24p,	4=36p,	5=48p,	max	60p.

Kom	ihåg	att	inte	fastna	på	en	uppgift.	Bestäm	i	förväg	din	egen	tidsgräns	per	uppgift.	Lycka	till!		

Uppgift	1:	[8	poäng	totalt]	grunder	i	objektorientering	och	Java

A. Förklara	vad	klassvariabler	och	instansvariabler	är.	Hur	skiljer	de	sig	från	varandra?	
Använd	exempel	i	din	förklaring.	[4	poäng]

B. Förklara	vad	JPanel	och	JFrame	är.	Hur	skiljer	de	sig	från	varandra?	Använd	exempel	i	din	
förklaring.	[4	poäng]

Uppgift	2:	[15	poäng	totalt]	att	skriva	klass,	användning	av	standard	klasser

Denna	uppgift	handlar	om	att	implementera	en	klass	PupilDatabase	som	fungerar	som	en	
databas	för	information	om	elever	i	en	skola.

A. Skriv	all	kod	som	behövs	för	en	klass	som	har	följande	funktionalitet.	[10	poäng]

• När	man	skapar	en	ny	instans	av	klassen	bör	den	representera	en	tom	databas.

• Man	ska	kunna	lägga	till	information	(elev	id,	namn,	klass)	med	en	metod	med	
följande	signatur..

public	void	setPupilInfo(int	pupilID,	String	name,	String	className)

• Klassen	bör	ha	metoder	för	att	hämta	ut	information,	som	nedan.	Dessa	metoder	ska	
returnera	null	ifall	det	inte	finns	information	lagrat	för	det	givna	pupilID.

					public	String	getPupilName(int	pupilID)

					public	String	getPupilClassName(int	pupilID)

Obs:		Anta	att	varje	elev	har	ett	unikt	elev	id	(pupilID).

Tips:		Det	är	lättast	att	lösa	uppgiften	med	hjälp	av	en	hjälpklass	vars	instanser	innehåller	
all	information	för	en	elev.

B. Lägg	till	en	metod	som	returnerar	namnen	på	alla	elever	i	en	given	klass.	[5	poäng]

					public	List<String>	pupilsInClass(String	className)

Uppgift	3:	[10	poäng]	interface,	iterators,	listor,	exceptions

Denna	uppgift	handlar	om	iterators.	Java	har	ett	standard	Iterator	interface	med	metoder	
hasNext	och	next,	som	man	kan	använda	för	att	stiga	(framåt)	igenom	en	samling	element.	

Denna	uppgift	handlar	om	att	implementera	en	ny	iterator	variant	NextPrev	med	vilken	
man	kan	gå	framåt	och	bakåt	i	en	samling	element.	Det	här	är	definitionen	av	NextPrev:

public	interface	NextPrev<A>	{

				/**	Returns	true	if	there	is	an	element	at	this	position	*/

				public	boolean	hasCurr();

				/**	Returns	element	at	current	position,	if	hasCurr()	returns	true.

								Throws	an	exception	if	hasCurr()	returns	false	*/

				public	A	curr();

				/**	Moves	this	iterator	one	step	forward	*/

				public	void	next();

				/**	Moves	this	iterator	one	step	backward	*/

				public	void	prev();

}

Skriv	kod	för	en	klass	NextPrevOfList	som	är	en	NextPrev	iterator	för	listan	som	man	ger	
till	new	NextPrevOfList.	Kommentarerna	nedan	förklarar	hur	koden	nedan	bör	fungera	
med	din	implementation	av	NextPrevOfList	klassen.

								List<String>	l	=	new	LinkedList<String>();

								l.add("A");																																			//	l	är	["A"]

								l.add("B");																																			//	l	är	["A","B"]

								l.add("C");																																			//	l	är	["A","B","C"]

								l.add("D");																																			//	l	är	["A","B","C","D"]

								NextPrev<String>	np	=	new	NextPrevOfList(l);

								System.out.println(np.curr());																//	bör	skriva	ut	A

								System.out.println(np.curr());																//	bör	skriva	ut	A

								np.next();

								System.out.println(np.curr());																//	bör	skriva	ut	B

								np.next();

								System.out.println(np.curr());																//	bör	skriva	ut	C

								while	(np.hasCurr())	{

												System.out.println(np.curr());

												np.prev();

								}																												//	loopen	bör	skriva	ut	C,	sedan	B,	sedan	A

Obs:		Du	kan	anta	att	ingen	ändrar	i	listan	som	NextPrevOfList	får	som	indata.

Uppgift	4:	[12	poäng	totalt]	specifikation	och	testning

Denna	uppgift	handlar	om	att	hitta	svagheter	i	testkod.	Testkoden	är	följande.

								Random	r	=	new	Random();

								int[]	a	=	new	int[r.nextInt(2000)+1];

								for	(int	i=0;	i<a.length;	i++)	{

												a[i]	=	r.nextInt();

								}

								try	{

												sort(a);																	//	det	är	denna	sort	metod	som	testas

								}	catch	(Exception	e)	{

												assertTrue(false);

								}

								for	(int	i=0;	i<a.length-1;	i++)	{

												assertTrue(a[i]	<=	a[i+1]);

								}

Koden	ovan	testar	metoden	sort	som	har	följande	signatur	och	specifikation.

				/**	Rearranges	elements	of	array	a	so	that	a[i]	<=	a[i+1],	for	every	i.

								This	method	does	not	throw	any	exception.	*/

				public	static	void	sort(int[]	a)	

Här	är	uppgifterna:

A. Förklara	varför	testkoden	kan	missa	fel	i	implementationen	av	sort.	[4	poäng]

	 		Tips:		Nyckeln	till	gåtan	är	ordet	“rearranges”	i	specifikationen,	dvs	“arrangerar	om”.

B. Skriv	en	implementation	av	sort	som	testkoden	alltid	accepterar,	men	som	inte	följer	
specifikationen	för	sort.	[4	poäng]

C. Beskriv	med	ord	hur	testkoden	kan	förbättras	så	att	den	verkligen	testar	det	som	står	i	
specifikationen	för	sort.	[4	poäng]

Uppgift	5:	[15	poäng]	grafiskt	användargränssnitt,	ritning

Din	uppgift	är	att	implementera	en	klass	Histrogram	så	att	varje	Histrogram	är	en	JPanel	
och	så	att	den	ritar	ut	ett	histogram	som	visualisera	datan	new	Histrogram	är	given.	

Exempel:		Med	din	implementation	av	Histrogram	bör	koden	nedan	
få	fönstret	f	att	se	ungefär	ut	som	på	bilden	till	höger.

								double[]	data	=	{	0.1,	0.2,	0.3,	0.8,	0.5	};

								JFrame	f	=	new	JFrame("Histogram	demo");

								JPanel	p	=	new	Histrogram(data);

								p.setPreferredSize(new	Dimension(200,100));

								f.add(p);	

								f.pack();	

								f.setVisible(true);

Obs:		Se	till	att	Histrogram	alltid	ritar	ut	datan	så	som	den	fick	den	när	den	skapades.	

Obs:		Din	lösning	bör	fungera	också	för	annan	indata	än	den	som	är	given	i	exemplet	
ovan,	men	du	kan	anta	att	double	arrayn	aldrig	är	tom	och	att	den	aldrig	är	null. 

Utdrag	ur	Javas	API.												Obs:	Man	behöver	inte	använda	alla	dessa	klasser.	Man	får	också	använda	annat	från	Javas	API.	

Class	Color

static	Color	WHITE	

static	Color	BLACK

Class	Component	extends	Object

void	repaint()

Repaints	this	component.

Class	Graphics	extends	Object

void	fillOval(int	x,	int	y,	int	width,	int	height)

Fills	an	oval	bounded	by	the	specified	rectangle	with	the	current	color.

void	fillRect(int	x,	int	y,	int	width,	int	height)

Fills	the	specified	rectangle.

void	setColor(Color	c)

Sets	this	graphics	context's	current	color	to	the	specified	color.

Class	HashMap<K,V>	extends	AbstractMap<K,V>	extends	Object	implements	Map<K,V>

HashMap()

Constructs	an	empty	HashMap	with	the	default	initial	capacity	(16)	and	the	
default	load	factor	(0.75).

V	get(Object	key)

Returns	the	value	to	which	the	specified	key	is	mapped,	or	null	if	this	map	
contains	no	mapping	for	the	key.

V	put(K	key,	V	value)

Associates	the	specified	value	with	the	specified	key	in	this	map.	Class	

IllegalArgumentException	extends	Exception

IllegalArgumentException()

Creates	a	new	IllegalArgumentException.

Interface	Iterator<E>

boolean	hasNext()

Returns	true	if	the	iteration	has	more	elements.

E	next()

Returns	the	next	element	in	the	iteration.

Class	JComponent	extends	Container	extends	Component	extends	Object

int	getHeight()

Returns	the	current	height	of	this	component.

int	getWidth()

Returns	the	current	width	of	this	component.	

void	paintComponent(Graphics	g)

Calls	the	UI	delegate's	paint	method,	if	the	UI	delegate	is	non-null.

Class	JFrame	extends	Frame	extends	Container	extends	Component	extends	Object

JFrame(String	title)

Creates	a	new,	initially	invisible	Frame	with	the	specified	title.

void	setLayout(LayoutManager	manager)

Sets	the	LayoutManager.

Class	JPanel	extends	JComponent	extends	Container	extends	Component	extends	Object

JPanel()

Creates	a	new	JPanel	with	a	double	buffer	and	a	flow	layout.

Interface	List<E>

boolean	add(E	e)

Appends	the	specified	element	to	the	end	of	this	list.

Iterator<E>	iterator()

Returns	an	iterator	over	the	elements	in	this	list	in	proper	sequence.

E	get(int	index)

Returns	the	element	at	the	specified	position	in	this	list.

int	size()

Returns	the	number	of	elements	in	this	list.

Class	LinkedList<E>	extends	AbstractCollection<E>	extends	Object	implements	List<E>

LinkedList()

Constructs	an	empty	list.

Class	Object

boolean	equals(Object	obj)

Indicates	whether	some	other	object	is	"equal	to"	this	one.

