Data och Informationsteknik / Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
Ansvarig larare: Magnus Myréen

DAT050 Objektorienterad programmering
Tentamen, tisdag, 2023-01-03, 08:30-12:30

Vitsordsgranser: 3=24p, 4=36p, 5=48p, max 60p.

Kom ihag att inte fastna pa en uppgift. Bestam i forvag din egen tidsgrans per uppgift. Lycka till!

Uppgift 1: [8 poang totalt] grunder i objektorientering och Java

A. Forklara vad klassvariabler och instansvariabler ar. Hur skiljer de sig fran varandra?
Anvand exempel i din forklaring. [4 poang]

B. Forklara vad JPanel och JFrame ar. Hur skiljer de sig fran varandra? Anvind exempel i din
forklaring. [4 poang]

Uppgift 2: [15 poang totalt] att skriva klass, anvdndning av standard klasser

Denna uppgift handlar om att implementera en klass PupilDatabase som fungerar som en
databas for information om elever i en skola.

A. Skriv all kod som behdvs for en klass som har foljande funktionalitet. [10 podng]

. Nar man skapar en ny instans av klassen bor den representera en tom databas.

. Man ska kunna lagga till information (elev id, namn, klass) med en metod med

foljande signatur.

public void setPupilInfo(int pupilID, String name, String className)

Klassen bor ha metoder for att hdmta ut information, som nedan. Dessa metoder ska
returnera null ifall det inte finns information lagrat foér det givna pupilID.

public String getPupilName(int pupilID)
public String getPupilClassName(int pupilID)
Obs: Anta att varje elev har ett unikt elev id (pupilID).

Tips: Det ar lattast att 16sa uppgiften med hjalp av en hjélpklass vars instanser innehaller
all information for en elev.

B. Lagg till en metod som returnerar namnen pa alla elever i en given Kklass. [5 podng]

public List<String> pupilsInClass(String className)

Uppgift 3: [10 poang] interface, iterators, listor, exceptions

Denna uppgift handlar om iterators. Java har ett standard Iterator interface med metoder
hasNext och next, som man kan anvanda for att stiga (framat) igenom en samling element.

Denna uppgift handlar om att implementera en ny iterator variant NextPrev med vilken
man kan ga framdt och bakdt i en samling element. Det har ar definitionen av NextPrev:

public interface NextPrev<A> {

/** Returns true if there is an element at this position */
public boolean hasCurr();

/** Returns element at current position, if hasCurr() returns true.
Throws an exception if hasCurr() returns false */
public A curr();

/** Moves this iterator one step forward */
public void next();

/** Moves this iterator one step backward */
public void prev();

Skriv kod for en klass NextPrevOfList som ar en NextPrev iterator for listan som man ger
till new NextPrevOfList. Kommentarerna nedan forklarar hur koden nedan bor fungera
med din implementation av NextPrevOfList klassen.

List<String> 1 = new LinkedList<String>();

l.add("A"); // 1 ar ["A"]
1l.add("B"); // 1 ar ["A","B"]
l.add("C"); // 1 ar ["A","B","C"]
l.add("D"); // 1 ar ["A","B","C","D"]
NextPrev<String> np = new NextPrevOfList(l);
System.out.println(np.curr()); // bor skriva ut A
System.out.println(np.curr()); // bor skriva ut A
np.next();
System.out.println(np.curr()); // boér skriva ut B
np.next();
System.out.println(np.curr()); // bor skriva ut C
while (np.hasCurr()) {

System.out.println(np.curr());

np.prev();
} // loopen bor skriva ut C, sedan B, sedan A

Obs: Du kan anta att ingen dndrar i listan som NextPrevOfList far som indata.

Uppgift 4: [12 poang totalt] specifikation och testning

Denna uppgift handlar om att hitta svagheter i testkod. Testkoden ar foljande.

Random r = new Random();

int[] a = new int[r.nextInt(2000)+1];

for (int i=0; i<a.length; i++) {
a[i] = r.nextInt();

}

try {
sort(a); // det ar denna sort metod som testas

} catch (Exception e) {
assertTrue(false);

}
for (int i=0; i<a.length-1; i++) {
assertTrue(a[i] <= a[i+1]);

}

Koden ovan testar metoden sort som har féljande signatur och specifikation.

/** Rearranges elements of array a so that a[i] <= a[i+1], for every i.
This method does not throw any exception. */
public static void sort(int[] a)

Har ar uppgifterna:

A. Forklara varfor testkoden kan missa fel i implementationen av sort. [4 podng]
Tips: Nyckeln till gdtan ar ordet “rearranges” i specifikationen, dvs “arrangerar om”.

B. Skriv en implementation av sort som testkoden alltid accepterar, men som inte foljer
specifikationen for sort. [4 podng]

C. Beskriv med ord hur testkoden kan forbattras sa att den verkligen testar det som star i
specifikationen for sort. [4 podng]

Uppgift 5: [15 poang] grafiskt anvdndargrdnssnitt, ritning

Din uppgift ar att implementera en klass Histrogram sa att varje Histrogram dr en JPanel
och sa att den ritar ut ett histogram som visualisera datan new Histrogram ar given.

Exempel: Med din implementation av Histrogram bor koden nedan
fa fonstret f att se ungefar ut som pa bilden till hoger.

double[] data = { ©.1, 0.2, 0.3, 0.8, 0.5 }; ® © @ Histogram demo
JFrame f = new JFrame("Histogram demo");

JPanel p = new Histrogram(data);

p.setPreferredSize(new Dimension(200,100));

f.pack();
pack() -

f.setVisible(true);

Obs: Se till att Histrogram alltid ritar ut datan sa som den fick den nir den skapades.

Obs: Din 16sning bor fungera ocksa for annan indata 4n den som ar given i exemplet
ovan, men du kan anta att double arrayn aldrig &r tom och att den aldrig ar null.

Utdrag ur Javas API. Obs: Man behover inte anvanda alla dessa klasser. Man far ocksa anvanda annat fran Javas API

Class Color
static Color WHITE
static Color BLACK
Class Component extends Object
void repaint()
Repaints this component.
Class Graphics extends Object
void filloval(int x, int y, int width, int height)
Fills an oval bounded by the specified rectangle with the current color.
void fillRect(int x, int y, int width, int height)
Fills the specified rectangle.
void setColor(Color c)
Sets this graphics context's current color to the specified color.
Class HashMap<K,V> extends AbstractMap<K,V> extends Object implements Map<K,V>
HashMap()
Constructs an empty HashMap with the default initial capacity (16) and the
default load factor (0.75).
V get(Object key)
Returns the value to which the specified key is mapped, or null if this map
contains no mapping for the key.
V put(K key, V value)
Associates the specified value with the specified key in this map. Class
IllegalArgumentException extends Exception
IllegalArgumentException()
Creates a new IllegalArgumentException.
Interface Iterator<E>
boolean hasNext()
Returns true if the iteration has more elements.
E next()
Returns the next element in the iteration.
Class JComponent extends Container extends Component extends Object
int getHeight()
Returns the current height of this component.
int getWidth()
Returns the current width of this component.
void paintComponent(Graphics g)
Calls the UI delegate's paint method, if the UI delegate is non-null.
Class JFrame extends Frame extends Container extends Component extends Object
JFrame(String title)
Creates a new, initially invisible Frame with the specified title.
void setLayout(LayoutManager manager)
Sets the LayoutManager.
Class JPanel extends JComponent extends Container extends Component extends Object
JPanel()
Creates a new JPanel with a double buffer and a flow layout.
Interface List<E>
boolean add(E e)
Appends the specified element to the end of this list.
Iterator<E> iterator()
Returns an iterator over the elements in this list in proper sequence.
E get(int index)
Returns the element at the specified position in this list.
int size()
Returns the number of elements in this list.
Class LinkedList<E> extends AbstractCollection<E> extends Object implements List<E>
LinkedList()
Constructs an empty list.
Class Object
boolean equals(Object obj)
Indicates whether some other object is "equal to" this one.

