
Data	och	Informationsteknik	/	Computer	Science	and	Engineering

Chalmers	University	of	Technology	and	University	of	Gothenburg

Ansvarig	lärare:	Magnus	Myréen

DAT050	Objektorienterad	programmering

Modellsvar	för	tentamen,	tisdag,	2023-01-03,	08:30-12:30

Vitsordsgränser:		3=24p,	4=36p,	5=48p,	max	60p.

Kom	ihåg	att	inte	fastna	på	en	uppgift.	Bestäm	i	förväg	din	egen	tidsgräns	per	uppgift.	Lycka	till!		

Modellsvar	för	Uppgift	1:	[8	poäng	totalt]	grunder	i	objektorientering	och	Java

A. Klassvariabler	är	globala	variabler	som	tillhör	klassen.	Instansvariabler	är	variabler	som	
finns	i	varje	instans	av	klassen.	Det	finns	alltså	en	egen	version	av	varje	instansvariabel	i	
varje	instans	av	klassen.	

private	static	int	klassVar;			//	klassvariabler	deklareras	med	static

private	int	instVar;											//	instansvariabler	deklareras	utan	static

B. En	Frame	är	ett	fönster	där	man	kan	lägga	endast	en	komponent.	En	JPanel	är	en	yta	man	
kan	rita	på	och	som	man	kan	lägga	flera	komponenter	på.	Vanligtvis	lägger	man	en	JPanel	
inuti	en	JFrame	och	sedan	många	komponenter	i	JPaneln,	inklusive	andra	JPanel	
instanser.	

Modellsvar	för	Uppgift	2:	[15	poäng	totalt]	att	skriva	klass,	användning	av	standard	klasser

A.

public	class	PupilDatabase	{

				private	class	PupilInfo	{

								private	String	name,	className;

								public	PupilInfo(String	name,	String	className)	{

												this.name	=	name;	this.className	=	className;

								}

								public	String	getName()	{	return	name;	}

								public	String	getClassName()	{	return	className;	}

				}

				private	HashMap<Integer,PupilInfo>	db;

				public	PupilDatabase()	{

								db	=	new	HashMap();

				}

				public	void	setPupilInfo(int	pupilID,	String	name,	String	className)	{

								db.put(pupilID,	new	PupilInfo(name,className));

				}

				public	String	getPupilName(int	pupilID)	{

								PupilInfo	i	=	db.get(pupilID);

								if	(i	==	null)	{	return	null;	}

								return	i.getName();

				}

				public	String	getPupilClassName(int	pupilID)	{

								PupilInfo	i	=	db.get(pupilID);

								if	(i	==	null)	{	return	null;	}

								return	i.getClassName();

				}

}

B.

				public	List<String>	pupilsInClass(String	className)	{

								List<String>	l	=	new	LinkedList<String>();

								for	(PupilInfo	pi	:	db.values())	{

												if	(className.equals(pi.getClassName()))	{

																l.add(pi.getName());

												}

								}

								return	l;

				}

Modellsvar	för	Uppgift	3:	[10	poäng]	interface,	iterators,	listor,	exceptions

import	java.util.*;

public	class	NextPrevOfList<A>	implements	NextPrev<A>	{

				private	List<A>	list;

				private	int	pos;

				public	NextPrevOfList(List<A>	list)	{

								this.list	=	list;

								this.pos	=	0;

				}

				public	boolean	hasCurr()	{

								return	(0	<=	pos)	&&	(pos	<	list.size());

				}

				public	A	curr()	{

								if	(!hasCurr())	{	throw	new	IllegalArgumentException();	}

								return	list.get(pos);

				}

				public	void	next()	{	pos++;	}

				public	void	prev()	{	pos--;	}

}

Modellsvar	för	Uppgift	4:	[12	poäng	totalt]	specifikation	och	testning

A. Testkoden	kollar	inte	om	elementen	som	finns	i	arrayn	efter	att	sort	har	kört	har	något	
samband	med	elementen	som	fanns	i	arrayn	innan	sort	körde.	Det	kan	ju	hända	att	sort	
har	tappat	bort	element	eller	bara	skrivit	nollor	in	i	hela	arrayn.

B. 		

				public	static	void	sort(int[]	a)	{

								for	(int	i=0;	i<a.length;	i++)	{

												a[i]	=	0;

								}

				}

C. Testkoden	borde	göra	en	kopia	av	array	a	innan	den	ger	arrayn	till	sort.	Efter	att	sort	har	
kört	bör	den	kolla	att	alla	element	i	den	ursprungliga	versionen	av	a	ännu	finns	i	array	a	
efter	att	sort	har	kört.	Detta	gör	man	enklast	med	att	köra	en	pålitlig	version	av	sortering	
på	kopian	av	a	och	sen	jämför	man	resultatet	av	sort	med	den	pålitligt	sorterade	versionen	
av	det	ursprungliga	innehållet	av	a.

Modellsvar	för	Uppgift	5:	[15	poäng]	grafiskt	användargränssnitt,	ritning

import	javax.swing.*;

import	java.awt.*;

import	java.awt.event.*;

public	class	Histrogram	extends	JPanel	{

				private	double[]	data;

				public	Histrogram(double[]	data)	{

								this.data	=	new	double[data.length];

								for	(int	i=0;	i<data.length;	i++)	{

												this.data[i]	=	data[i];

								}

				}

				public	void	paintComponent(Graphics	g)	{

								int	w	=	getWidth();

								int	h	=	getHeight();

								g.setColor(Color.WHITE);

								g.fillRect(0,0,w,h);

								g.setColor(Color.BLACK);

								int	w1	=	w	/	data.length;

								for	(int	i	=	0;	i	<	data.length;	i++)	{

												int	h1	=	h	-	(int)(((double)h)*data[i]);

												g.fillRect(w1*i+2,h1,w1-4,h);

								}

				}

}

