
Data	och	Informationsteknik	/	Computer	Science	and	Engineering

Chalmers	University	of	Technology	and	University	of	Gothenburg

Ansvarig	lärare:	Magnus	Myréen

DAT050	Objektorienterad	programmering

Tentamen,	torsdag,	2022-10-27,	08:30-12:30

Vitsordsgränser:		3=24p,	4=36p,	5=48p,	max	60p.

Kom	ihåg	att	inte	fastna	på	en	uppgift.	Bestäm	i	förväg	din	egen	tidsgräns	per	uppgift.	Lycka	till!		

Uppgift	1:	[10	poäng]	grunder	i	objektorientering

Immutable:

A. Vad	betyder	begreppet	immutable	i	objektorienterad	programmering?	[2	poäng]

B. Hur	programmerar	man	klasser	så	att	objekten	är	immutable?	[2	poäng]

C. Vilket	problem	undviker	man	om	man	skriver	immutable	kod?	Varför?	[2	poäng]

Kohesion	och	koppling:

D. Förklara	kort	vad	(hög)	kohesion	och	(låg)	koppling	betyder	i	samband	med	objekt-

orienterad	programmering.	[2	poäng]

E. Model-View-Control	(MVC)	designmönstret	hjälper	en	få	hög	kohesion	och	låg	koppling.	

Beskriv	kort	relationerna	mellan	Model,	View	och	Control	klasserna	i	MVC.	[2	poäng]	

Uppgift	2:	[9	poäng	totalt]	arv,	referensvärden

Vad	skrivs	ut	när	följande	program	körs?

public	class	Main	{

				public	static	void	main(String[]	args)	{

								A	a	=	new	A();

								String[]	strs	=	{	"abc"	};

								a.line1();

								a.line2(new	B());

								a.line3(strs);

				}

}

public	class	A	extends	B	{

				public	void	test()	{	System.out.println("test	in	A");	}

				public	void	line3(String[]	strs)	{

								strs[0].toUpperCase();

								System.out.println(strs[0]);

				}

}

public	class	B	{

				public	void	test()	{	System.out.println("test	in	B");	}

				public	void	line1()	{	test();	}

				public	void	line2(Object	other)	{

								boolean	b	=	(this.getClass()	==	other.getClass());	

								System.out.println(b);

				}

}

Uppgift	3:	[16	poäng	totalt]	att	skriva	klasser,	testning,	exceptions

Denna	uppgift	handlar	om	att	skriva	kod	för	en	klass	som	representerar	en	multimängd	
(kallas	multiset	eller	bag	på	engelska)	av	heltal	(integers).	En	multimängd	av	heltal,	dvs	
{1,5,1,1,2},	är	lik	en	matematisk	mängd,	dvs	{1,5,2},	på	det	sättet	att	ordningen	av	elementen	
inte	har	någon	betydelse.	Däremot	spelar	antalet	element	roll	i	en	multimängd.

Exempel:	Multimängden	{1,5,1,1,2}	är	samma	som	{1,1,5,2,1},	men	inte	samma	som	
multimängden	{1,5,1,2}	för	att	ett	element	1	saknas.

Skriv	dina	lösningar	så	att	de	passar	in	med	kodskissen	nedan,	som	representerar	
multimängden	{1,5,1,1,2}	med	en	LinkedList	som	är	[1,5,1,1,2].

import	java.util.LinkedList;

/**	en	multimängd	för	integers	*/

public	class	IntBag	{

				private	LinkedList<Integer>	bag	=	new	LinkedList<Integer>();

				/**	lägger	till	heltalet	j	till	denna	IntBag	*/

				public	void	insert(int	j)	{

								bag.add(j);

				}

				/**	returnerar	hur	många	av	heltalet	j	det	finns	i	denna	IntBag	*/

				public	int	howMany(int	j)	{

								...	del	A	...

				}

				/**	kollar	likhet	enligt	Javas	konventioner	*/

				public	boolean	equals(Object	obj)	{

								...	del	C	...

				}

}

Uppgifter:

A. Implementera	metoden	howMany.	När	man	anropar	howMany(1)	på	en	IntBag	som	
representerar	{1,5,1,1,2}	då	bör	den	returnera	3	för	att	1	finns	tre	gånger.	[4	poäng]

B. Skriv	JUnit	kod	som	testar	att	IntBag	klarar	exemplet	som	är	beskrivet	i	del	A.	Se	till	att	
test	koden	inte	kraschar	ifall	ett	exception	kastas.	Använd	assertEquals	mm.	[4	poäng]

C. Skriv	kod	för	equals	metoden	så	att	den	returnerar	sant	ifall	två	multimängder	
representerar	samma	matematiska	multimängd,	dvs	ordningen	är	inte	viktig.	[8	poäng]

Tips	för	del	C:		Man	kan	kolla	om	två	multimängder,	a	och	b,	är	samma	genom	att	kolla	om	a	
är	en	delmängd	av	b	och	att	b	är	en	delmängd	av	a.	Detta	går	smidigast	om	man	
implementerar	en	hjälpmetod	som	kollar	om	en	multimängd	är	en	delmängd	av	en	annan.

				/**	kollar	om	this	är	en	delmängd	av	other	*/

				private	boolean	subset(IntBag	other)	{	...	}

En	multimängd	a	är	en	delmängd	av	multimängd	b	ifall	alla	element	i	a	finns	åtminstone	lika	
många	gånger	i	multimängden	b.

OBS:	Det	är	viktigt	att	koden	fungerar	rätt.	Det	är	däremot	inte	viktigt	att	koden	är	snabb.	
OBS:	Om	din	equals	metod	muterar	objekten	måste	du	motivera	varför	det	är	OK.

Uppgift	4:	[10	poäng]	interface,	enum,	exceptions

Läs	följande	definitioner.

public	interface	CanCompare	{

				/**	jämför	this	med	other,	

								returnerar	LESS	ifall	this	är	mindre	än	other,	

								kastar	aldrig	exceptions,	returnerar	aldrig	null	*/

				public	CompareResult	compare(CanCompare	other);

}

public	enum	CompareResult	{	LESS,	EQUAL,	GREATER;	}

public	class	EmptyException	extends	Exception	{}

Din	uppgift	är	att	skriva	en	metod	findLeast	som,	givet	en	array	av	objekt	av	typen	
CanCompare,	returner	ett	element	från	arrayn	så	att	det	inte	finns	något	element	i	array	som	
är	strikt	mindre	(LESS)	än	det	elementet	som	returneras.	Om	det	finns	flera	element	som	är	
lika	små,	då	passar	det	att	man	returnerar	vilket	som	helst	av	de	minsta	elementen.

Koden	för	findLeast	bör	kasta	ett	EmptyException	exception	ifall	det	inte	finns	något	
minsta	element.	Var	noga	med	null.	Se	till	att	EmptyException	är	det	enda	exception	som	
metoden	kan	kasta	oberoende	var	null	förekommer	i	indatan	för	metoden.	Element	av	
arrayn	som	är	null	bör	behandlas	helt	som	om	de	inte	finns	i	arrayn.

OBS:	Se	till	att	signaturen	av	din	metod	tar	i	beaktande	att	EmptyException	inte	är	en	
unchecked	exception	dvs	inte	en	RuntimeException.

Uppgift	5:	[15	poäng	totalt]	grafiskt	användargränssnitt,	lyssnare

Din	uppgift	är	att	implementera	ett	litet	grafik	program	som	visar	en	
ruta	som	på	bilden,	dvs	rutan	bör	innehålla	två	knappar,	en	med	
texten	“red”	och	den	andra	med	texten	“green”.	Varje	gång	man	
trycker	på	en	av	knapparna	ska	programmet	skriva	ut	en	rad	text	som	
visar	alla	knapptryck	som	skett	hittills	i	den	ordningen	de	har	skett.	

Exempel:	Om	man	först	trycker	red,	då	bör	programmet	skriva	ut	raden:

red

När	användaren	sedan	trycker	green,	då	bör	programmet	skriva	ut	raden:

red	green

Om	användaren	sedan	trycker	green	igen,	bör	programmet	skriva	ut	raden:

red	green	green

Om	användaren	sedan	trycker	red,	då	bör	programmet	skriva	ut	raden:

red	green	green	red

OBS:	Positionen	av	knapparna	är	inte	viktig,	men	de	ska	synas. 

Utdrag	ur	Javas	API.												Obs:	Man	behöver	inte	använda	alla	dessa	klasser.	Man	får	också	använda	annat	från	Javas	API.	

Class	ActionEvent

String	getActionCommand()

Returns	the	command	string	associated	with	this	action.

Interface	ActionListener

void	actionPerformed(ActionEvent	e)

Invoked	when	an	action	occurs.

Class	Collections	extends	Object

static	void	sort(List<T>	list)

Sorts	the	specified	list	into	ascending	order,	according	to	the	natural	ordering	
of	its	elements.

Class	Component	extends	Object

void	repaint()

Repaints	this	component.

Class	Container	extends	Component	extends	Object

Component	add(Component	comp)

Appends	the	specified	component	to	the	end	of	this	container.

Class	GridLayout	extends	Object

GridLayout(int	rows,	int	cols)

Creates	a	grid	layout	with	the	specified	number	of	rows	and	columns.

Class	Integer	extends	Number	extends	Object

Integer(int	value)

Constructs	a	newly	allocated	Integer	object	that	represents	the	given	int	value.

int	intValue()

Returns	the	value	of	this	Integer	as	an	int.

Interface	Iterator<E>

boolean	hasNext()

Returns	true	if	the	iteration	has	more	elements.

E	next()

Returns	the	next	element	in	the	iteration.

Class	JButton	extends	AbstractButton	extends	JComponent	extends	...	extends	Object

JButton(String	text)

Creates	a	button	with	text.

void	addActionListener(ActionListener	l)

Adds	an	ActionListener	to	the	button.

void	setActionCommand(String	actionCommand)

Sets	the	action	command	for	this	button.

Class	JComponent	extends	Container	extends	Component	extends	Object

void	paintComponent(Graphics	g)

Calls	the	UI	delegate's	paint	method,	if	the	UI	delegate	is	non-null.

Class	JFrame	extends	Frame	extends	Container	extends	Component	extends	Object

JFrame(String	title)

Creates	a	new,	initially	invisible	Frame	with	the	specified	title.

void	setLayout(LayoutManager	manager)

Sets	the	LayoutManager.

Class	JPanel	extends	JComponent	extends	Container	extends	Component	extends	Object

JPanel()

Creates	a	new	JPanel	with	a	double	buffer	and	a	flow	layout.

Class	LinkedList<E>	extends	AbstractCollection<E>	extends	Object	implements	List<E>

LinkedList()

Constructs	an	empty	list.

boolean	add(E	e)

Appends	the	specified	element	to	the	end	of	this	list.

Iterator<E>	iterator()

Returns	an	iterator	over	the	elements	in	this	list	in	proper	sequence.

E	get(int	index)

Returns	the	element	at	the	specified	position	in	this	list.

int	size()

Returns	the	number	of	elements	in	this	list.

Class	Object

boolean	equals(Object	obj)

Indicates	whether	some	other	object	is	"equal	to"	this	one.

