Data och Informationsteknik / Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
Ansvarig larare: Magnus Myréen

DAT050 Objektorienterad programmering
Tentamen, torsdag, 2022-10-27, 08:30-12:30

Vitsordsgranser: 3=24p, 4=36p, 5=48p, max 60p.

Kom ihag att inte fastna pa en uppgift. Bestam i forvag din egen tidsgrans per uppgift. Lycka till!

Uppgift 1: [10 poang] grunder i objektorientering

Immutable:

A. Vad betyder begreppet immutable i objektorienterad programmering? [2 podng]
B. Hur programmerar man klasser sa att objekten dr immutable? [2 poang]

C. Vilket problem undviker man om man skriver immutable kod? Varfor? [2 poang]

Kohesion och koppling:

D. Forklara kort vad (hog) kohesion och (1ag) koppling betyder i samband med objekt-
orienterad programmering. [2 poang]

E. Model-View-Control (MVC) designmdnstret hjdlper en fa hog kohesion och lag koppling.
Beskriv kort relationerna mellan Model, View och Control klasserna i MVC. [2 poang]

Uppgift 2: [9 poang totalt] arv, referensvirden

Vad skrivs ut nar foljande program kors?

public class Main {
public static void main(String[] args) {
A a = new A();
String[] strs = { "abc" };
a.linel();
a.line2(new B());
a.line3(strs);

}

public class A extends B {
public void test() { System.out.println("test in A"); }
public void line3(String[] strs) {
strs[0].toUpperCase();
System.out.println(strs[0]);

}

public class B {
public void test() { System.out.println("test in B"); }
public void linel() { test(); }
public void line2(Object other) {
boolean b = (this.getClass() == other.getClass());
System.out.println(b);

Uppgift 3: [16 poang totalt] att skriva klasser, testning, exceptions

Denna uppgift handlar om att skriva kod for en klass som representerar en multimédngd
(kallas multiset eller bag pa engelska) av heltal (integers). En multimangd av heltal, dvs
{1,5,1,1,2}, ar lik en matematisk mangd, dvs {1,5,2}, pa det sattet att ordningen av elementen
inte har nagon betydelse. Daremot spelar antalet element roll i en multimangd.

Exempel: Multimangden {1,5,1,1,2} ar samma som {1,1,5,2,1}, men inte samma som
multimdngden {1,5,1,2} for att ett element 1 saknas.

Skriv dina lésningar sa att de passar in med kodskissen nedan, som representerar
multimédngden {1,5,1,1,2} med en LinkedList som ér [1,5,1,1,2].

import java.util.LinkedlList;

/** en multimangd for integers */
public class IntBag {

private LinkedList<Integer> bag = new LinkedList<Integer>();

/** lagger till heltalet j till denna IntBag */
public void insert(int j) {

bag.add(j);
}

/** returnerar hur manga av heltalet j det finns i denna IntBag */
public int howMany(int j) {
. del A ...

}

/** kollar likhet enligt Javas konventioner */
public boolean equals(Object obj) {
.. del C ...

}
}

Uppgifter:

A. Implementera metoden howMany. Nar man anropar howMany (1) pa en IntBag som
representerar {1,5,1,1,2} da bor den returnera 3 for att 1 finns tre ganger. [4 poang]

B. Skriv JUnit kod som testar att IntBag klarar exemplet som ar beskrivet i del A. Se till att
test koden inte kraschar ifall ett exception kastas. Anvdnd assertEquals mm. [4 podng]

C. Skriv kod for equals metoden sa att den returnerar sant ifall tva multimangder
representerar samma matematiska multiméngd, dvs ordningen &r inte viktig. [8 podng]

Tips for del C: Man kan kolla om tva multimangder, a och b, d&r samma genom att kolla om a
ar en delméngd av b och att b dr en delméngd av a. Detta gar smidigast om man
implementerar en hjadlpmetod som kollar om en multimangd ar en delmingd av en annan.

/** kollar om this 3r en delmangd av other */
private boolean subset(IntBag other) { ... }

En multimédngd a ir en delmangd av multiméngd b ifall alla element i a finns atminstone lika
manga ganger i multimangden b.

OBS: Det ar viktigt att koden fungerar ratt. Det 4r daremot inte viktigt att koden ar snabb.
OBS: Om din equals metod muterar objekten maste du motivera varfor det ar OK.

Uppgift 4: [10 poang] interface, enum, exceptions
Las foljande definitioner.
public interface CanCompare {
/** jamfor this med other,
returnerar LESS ifall this ar mindre an other,

kastar aldrig exceptions, returnerar aldrig null */
public CompareResult compare(CanCompare other);

}

public enum CompareResult { LESS, EQUAL, GREATER; }

public class EmptyException extends Exception {}

Din uppgift ar att skriva en metod findLeast som, givet en array av objekt av typen
CanCompare, returner ett element fran arrayn sa att det inte finns nagot element i array som
ar strikt mindre (LESS) dn det elementet som returneras. Om det finns flera element som ar
lika sm3, da passar det att man returnerar vilket som helst av de minsta elementen.

Koden for findLeast bor kasta ett EmptyException exception ifall det inte finns nagot
minsta element. Var noga med null. Se till att EmptyException ar det enda exception som
metoden kan kasta oberoende var null forekommer i indatan féor metoden. Element av
arrayn som ar null bor behandlas helt som om de inte finns i arrayn.

OBS: Se till att signaturen av din metod tar i beaktande att EmptyException inte ir en
unchecked exception dvs inte en RuntimeException.

Uppgift 5: [15 poang totalt] grafiskt anvdndargrdnssnitt, lyssnare

. P RedG
Din uppgift ar att implementera ett litet grafik program som visar en @ @ RedGreen

ruta som pa bilden, dvs rutan bor innehalla tva knappar, en med red green

texten “red” och den andra med texten “green”. Varje gdng man

trycker pa en av knapparna ska programmet skriva ut en rad text som

visar alla knapptryck som skett hittills i den ordningen de har skett.

Exempel: Om man forst trycker red, da bor programmet skriva ut raden:
red

Néar anvandaren sedan trycker green, da bor programmet skriva ut raden:
red green

Om anvandaren sedan trycker green igen, boér programmet skriva ut raden:
red green green

Om anvandaren sedan trycker red, da bor programmet skriva ut raden:

red green green red

OBS: Positionen av knapparna ar inte viktig, men de ska synas.

Utdrag ur Javas API. Obs: Man behover inte anvanda alla dessa klasser. Man far ocksa anvanda annat fran Javas API

Class ActionEvent
String getActionCommand()
Returns the command string associated with this action.
Interface ActionListener
void actionPerformed(ActionEvent e)
Invoked when an action occurs.
Class Collections extends Object
static void sort(List<T> list)
Sorts the specified list into ascending order, according to the natural ordering
of its elements.
Class Component extends Object
void repaint()
Repaints this component.
Class Container extends Component extends Object
Component add(Component comp)
Appends the specified component to the end of this container.
Class GridLayout extends Object
GridLayout(int rows, int cols)
Creates a grid layout with the specified number of rows and columns.
Class Integer extends Number extends Object
Integer(int value)
Constructs a newly allocated Integer object that represents the given int value.
int intValue()
Returns the value of this Integer as an int.
Interface Iterator<E>
boolean hasNext()
Returns true if the iteration has more elements.
E next()
Returns the next element in the iteration.
Class JButton extends AbstractButton extends JComponent extends ... extends Object
JButton(String text)
Creates a button with text.
void addActionListener(ActionListener 1)
Adds an ActionListener to the button.
void setActionCommand(String actionCommand)
Sets the action command for this button.
Class JComponent extends Container extends Component extends Object
void paintComponent(Graphics g)
Calls the UI delegate's paint method, if the UI delegate is non-null.
Class JFrame extends Frame extends Container extends Component extends Object
JFrame(String title)
Creates a new, initially invisible Frame with the specified title.
void setLayout(LayoutManager manager)
Sets the LayoutManager.
Class JPanel extends JComponent extends Container extends Component extends Object
JPanel()
Creates a new JPanel with a double buffer and a flow layout.
Class LinkedList<E> extends AbstractCollection<E> extends Object implements List<E>
LinkedList()
Constructs an empty list.
boolean add(E e)
Appends the specified element to the end of this list.
Iterator<E> iterator()
Returns an iterator over the elements in this list in proper sequence.
E get(int index)
Returns the element at the specified position in this list.
int size()
Returns the number of elements in this list.
Class Object
boolean equals(Object obj)
Indicates whether some other object is "equal to" this one.

