
Data	och	Informationsteknik	/	Computer	Science	and	Engineering

Chalmers	University	of	Technology	and	University	of	Gothenburg

Ansvarig	lärare:	Magnus	Myréen

DAT050	Objektorienterad	programmering

Tentamen,	onsdag,	2022-08-24,	14:00-18:00

Vitsordsgränser:		3=24p,	4=36p,	5=48p,	max	60p.

Kom	ihåg	att	inte	fastna	på	en	uppgift.	Bestäm	i	förväg	din	egen	tidsgräns	per	uppgift.	Lycka	till!		

Uppgift	1:	[5	poäng]	grunder	i	objektorientering

Beskriv	skillnaden	mellan	abstrakta	klasser	(abstract)	och	Javas	interface	(interface).		
För	fulla	poäng	bör	man:	förklara	vad	man	kan	göra	med	abstrakta	klasser	som	man	inte	kan	
göra	med	interface;	och	också	förklara	vad	man	kan	göra	med	interface	som	man	inte	kan	
göra	med	abstrakta	klasser.	Använd	gärna	korta	kodexempel	i	svaret.

Uppgift	2:	[10	poäng	totalt]	private,	arv,	referensvärden

Obs:	Det	finns	inga	syntax	fel	i	koden	i	denna	uppgift.

A. Accepterar	Java	kompilatorn	följande?	Om	den	gör	det,	vad	skrivs	ut	när	programmet	
nedan	körs?	Förklara	kortfattat	ditt	svar.	[3	poäng]

public	class	Q2	extends	Q1	{

				public	int	getX()	{

								return	super.x;

				}

				public	static	void	main(String[]	args)	{

								Q2	q2	=	new	Q2();

								System.out.println(q2.getX());

				}

}

public	class	Q1	{

				private	int	x	=	34;

}

B. Accepterar	Java	kompilatorn	följande?	Om	den	gör	det,	vad	skrivs	ut	när	programmet	
nedan	körs?	Förklara	kortfattat	ditt	svar.	[3	poäng]

public	class	R1	{

				private	String	str	=	"Hello";

				public	String	getStr()	{

								return	str;

				}

				public	static	void	main(String[]	args)	{

								System.out.println(getStr());

				}

}

C. Accepterar	Java	kompilatorn	följande?	Om	den	gör	det,	vad	skrivs	ut	när	programmet	
nedan	körs?	Förklara	kortfattat	ditt	svar.	[4	poäng]

public	class	T1	{

				public	static	void	main(String[]	args)	{

								T2[]	array	=	{	null,	null,	null	};

								T2	x	=	new	T2();

								T2	y	=	new	T2();

								array[0]	=	x;

								array[1]	=	x;

								array[2]	=	y;

								array[1].setInt(2);

								System.out.println(array[0].getInt());

								System.out.println(array[1].getInt());

								System.out.println(array[2].getInt());

				}

}

public	class	T2	{

				private	int	i	=	1;

				public	void	setInt(int	i)	{	this.i	=	i;	}

				public	int	getInt()	{	return	i;	}

}

Uppgift	3:	[20	poäng	totalt]	att	skriva	klasser,	användning	av	standard	klasser

A. Din	uppgift	är	att	skriva	en	immutable	klass	IntPair	som	uppfyller	följande	krav:

• har	privata	int	instansvariabler	som	heter	fst	och	snd	[2	poäng]

• har	en	konstruktor	som	tar	in	två	int	parametrar	och	initialiserar	
instansvariablerna	[2	poäng]		

• har	get	metoder	för	instansvariablerna	[2	poäng]

• implementerar	en	toString	metod	så	att	kod	nedan	skriver	ut	“(1,2)”	[2	poäng]		

						IntPair	ip	=	new	IntPair(1,2);

						System.out.print(ip.toString());

• implementerar	en	equals	metod	som	följer	Javas	konventioner	[3	poäng]

• överskuggar	hashCode	metoden	från	Javas	Object	klass	med	en	implementation	
som	följer	Javas	konventioner	[2	poäng]

B. I	denna	del	bör	du	skriva	kod	för	en	mutable	klass	som	representerar	en	“oändlig”	
tvådimensionell	spelbräda.	Koordinaterna	är	indexerade	av	ett	par	heltal	av	typen	int	
(och	därför	är	spelbrädan	inte	egentligen	oändlig).	Metoderna	som	ska	vara	med	i	koden	
är	beskrivna	i	följande	kodskiss.	[7	poäng]

public	class	Board2D<A>	{

				/**	Stores	content	into	cell	(x,y)	*/

				public	void	setCell(int	x,	int	y,	A	content)	{	...	}

				/**	Returns	previously	stored	content	of	cell	(x,y)

								Returns	null	if	no	content	has	been	stored	at	(x,y)	*/

				public	A	getCell(int	x,	int	y)	{	...	}

}

Tips:	En	lösning	är	att	representera	tillståndet	internt	som	en	HashMap<IntPair,A>. 

Uppgift	4:	[10	poäng]	testning,	exceptions

Denna	uppgift	handlar	om	att	skriva	kod	som	hittar	skillnader	mellan	två	metoder,	foo_fast	
och	foo_slow,	som	bör	implementera	samma	sak.	Deras	signaturer	är:

				public	static	int	foo_fast(int	i)	throws	Exception	{	...	}

				public	static	int	foo_slow(int	i)	throws	Exception	{	...	}

Koden	som	kör	alla	test	är	följande.	Denna	kod	anropar	på	en	funktion	foo_test,	som	du	bör	
implementera.

				public	static	void	main(String[]	args)	{

								for	(int	i	=	-1000;	i	<	1000;	i++)	{

												if	(!foo_test(i))	{

																System.out.println("Test	failed	for	input:	"	+	i);

																return;

												}

								}

				}

Din	uppgift	är	att	implementera	foo_test	metoden	så	att	den,	givet	input	i,	kollar	att	
foo_fast	och	foo_slow	returnerar	samma	int,	eller	att	båda	kastar	något	exception	för	
input	i.	Din	foo_test	metod	får	inte	släppa	ut	exceptions.	Om	både	foo_fast	och	
foo_slow	kastar	exception	bör	testet	säga	att	de	har	samma	beteende	oberoende	om	
exceptions	som	kastas	är	olika.	Din	foo_test	metod	bör	ha	följande	signatur.	

				public	static	boolean	foo_test(int	i)	{	...	}

Uppgift	5:	[15	poäng	totalt]	grafik,	model	view	controller

Din	uppgift	är	att	implementera	en	View	klass	som	ärver	JPanel.	Denna	View	klass	bör	rita	
ut	20x20-pixel	stora	rutor	fyllda	med	svart	eller	vitt	enligt	whiteCell	metoden	i	m	som	View	
konstruktorn	får	som	input.	Koden	nedan	bör	resultera	i	ett	fönster	som	ser	ut	som	på	bilden.	

public	class	Control	extends	JFrame	{

				public	Control()	{

								Model	m	=	new	Model();

								View	w	=	new	View(m);

								add(w);

								setSize(200,200);

								setVisible(true);

				}

				public	static	void	main(String[]	args)	{

								Control	f	=	new	Control();

				}

}

public	class	Model	{

				public	boolean	whiteCell(int	x,	int	y)	{

								if	(x	==	1	&&	y	==	1)	{	return	true;	}

								if	(x	==	2	&&	y	==	1)	{	return	true;	}

								if	(x	==	1	&&	y	==	2)	{	return	true;	}

								if	(x	==	2	&&	y	==	3)	{	return	true;	}

								return	false;

				}

} 

Utdrag	ur	Javas	API.												Obs:	Man	behöver	inte	använda	alla	dessa	klasser.	Man	får	också	använda	annat	från	Javas	API.	

Class	Color	extends	Object	

Color(int	r,	int	g,	int	b)

Creates	an	opaque	sRGB	color	with	the	specified	red,	green,	and	blue	values	in	
the	range	(0	-	255).

BLACK

The	color	black.

WHITE

The	color	white.

Class	Component	extends	Object

void	repaint()

Repaints	this	component.

Class	Graphics	extends	Object

void	fillOval(int	x,	int	y,	int	width,	int	height)

Fills	an	oval	bounded	by	the	specified	rectangle	with	the	current	color.

void	fillRect(int	x,	int	y,	int	width,	int	height)

Fills	the	specified	rectangle.

void	setColor(Color	c)

Sets	this	graphics	context's	current	color	to	the	specified	color.

Class	HashMap<K,V>	extends	AbstractMap<K,V>	extends	Object	implements	Map<K,V>

HashMap()

Constructs	an	empty	HashMap	with	the	default	initial	capacity	(16)	and	the	
default	load	factor	(0.75).

V	get(Object	key)

Returns	the	value	to	which	the	specified	key	is	mapped,	or	null	if	this	map	
contains	no	mapping	for	the	key.

V	put(K	key,	V	value)

Associates	the	specified	value	with	the	specified	key	in	this	map.

Class	JComponent	extends	Container	extends	Component	extends	Object

void	paintComponent(Graphics	g)

Calls	the	UI	delegate's	paint	method,	if	the	UI	delegate	is	non-null.

Class	JPanel	extends	JComponent	extends	Container	extends	Component	extends	Object

JPanel()

Creates	a	new	JPanel	with	a	double	buffer	and	a	flow	layout.

int	getHeight()

Returns	the	current	height	of	this	component.

int	getWidth()

Returns	the	current	width	of	this	component.

void	paintComponent(Graphics	g)

Calls	the	UI	delegate's	paint	method,	if	the	UI	delegate	is	non-null.

Class	LinkedList<E>	extends	AbstractCollection<E>	extends	Object	implements	List<E>

LinkedList()

Constructs	an	empty	list.

boolean	add(E	e)

Appends	the	specified	element	to	the	end	of	this	list.

E	get(int	index)

Returns	the	element	at	the	specified	position	in	this	list.

int	size()

Returns	the	number	of	elements	in	this	list.

Class	Pair<K,V>	extends	Object

Pair​(K	key,	V	value)	

Creates	a	new	pair

K	getKey()	

Gets	the	key	for	this	pair.

V	getValue()	

Gets	the	value	for	this	pair.

Class	Object

boolean	equals(Object	obj)

Indicates	whether	some	other	object	is	"equal	to"	this	one.

int	hashCode()

Returns	a	hash	code	value	for	the	object.

