Data och Informationsteknik / Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
Ansvarig larare: Magnus Myréen

DAT050 Objektorienterad programmering
Tentamen, mandag, 2022-01-03, 08:30-12:30

Vitsordsgranser: 3=24p, 4=36p, 5=48p, max 60p.

Handledaren Jessica Barai besoker tentan och svarar pa eventuella fragor om uppgifterna.
Kom ihag att inte fastna pa en uppgift. Bestam i forvag din egen tidsgrans per uppgift. Lycka till!

Uppgift 1: [10 poang totalt] grunder i objektorientering

A. Forklarar kort vad som avses med "black box tinkande" i samband men objektorienterad
programmering. [2 podng]

B. Forklara varfor man kan sdga att vissa vélskrivna objektorienterade program ar
moduldra. [3 poang]

C. Foljande klass tar emot int varden med anrop till addInt och bor alltid returnera
genomsnittet av alla de hittills givna virdena med funktionen getAverage. Exempel: om

man lagt in virdena 4, 6, 8, 10 med addInt, da bor getAverage returnera 7.
public class Average {

private int sum = 0;
private int count = 0;
public void addInt(int n) {
sum = sum + n;
count = count + 1;

}

public double getAverage() {
return (double)sum / (double)count;

}
}

Koden nedan skriver ut Error och visar att det finns en svaghet/bug i koden ovan.

Average a = new Average();

a.addInt(800000000);

a.addInt(600000000);

a.addInt(500000000);

a.addInt(300000000) ;

if (a.getAverage() < 0.0) {
System.out.println("Error");

}

Din uppgift ar att skriva om Average klassen sa att denna bug tas bort. [5 poédng]

Uppgift 2: [10 poang totalt] grdnssnitt

Ett stort projekt anvinder f6ljande interface for att sitta pa och stinga av grejor.

/** An interface for turning on and off a device */
public interface Switch {

/** Command that turns a device on */
public void turnOn();

/** Command that turns a device off */
public void turnOff();

/** Returns the current state of the device */
public boolean isOn();

Nu anar fels6kare att koden i det stora projektet anropar pa turn0On och turnOff i onédan,
dvs turnOn anropas pa objektet som redan ar i on lage, och lika sa for turnOff i ett off lage.
Man bor inte anropa pa turnOn i on laget och inte pa turnOff i off laget.

Din uppgift ar att skriva en klass SafeSwitch som kan anvdndas som en wrapper runt
existerande instanser av Switch granssnittet. Din klass SafeSwitch bor implementera
Switch granssnittet och ha f6ljande konstruktor.

public SafeSwitch(Switch s) {

Idéen ar att instanser av SafeSwitch endast skickar vidare turnOn och turnOff signaler
till Switch instansen s nar s ar i ratt lage for att ta emot signalen.

Uppgift 3: [15 poang totalt] listor

Pascals triangel ser ut som nedan. Obs: Rad 2 kan riknas fran rad 1; rad 3 fran rad 2, osv.

rad 1: 1

rad 2: 1 1

rad 3: 1 2 1

rad 4: 1 3 3 1

rad 5: 1 4 6 4 1

rad 6: 1 5 10 10 5 1
rad 7: 1 6 15 20 15 6 1

Din uppgift ar att skriva en metod pascalsTrianglelLine i Java som returnerar rad
nummer n fran triangeln som en lista, for vilket positivt n som helst. Koden bor kasta ett
exception ifall det givna nummer n inte ar positivt.

public List<Integer> pascalsTriangleLine(int n) {
Exempel: For input 4 bor metoden returnera en lista som bestarav 1, 3, 3, 1.

Obs: Koden behover inte vara minnessnal, men den maste vara lattlast och korrekt.

Obs: Man behdver inte vara varsam med int typens begransningar i den har uppgiften.

Uppgift 4: [10 poang totalt] string, equals, referensvdrden
A. Vad skrivs ut nar foljande PrintStuff program kors? [5 poang]
public class PrintStuff {

public static void main(String[] args) {
String a "Hello";
String b "hello";
String ¢ = "HELLO";
a.toUpperCase();
String d = a.tolLowerCase();

c = a;
System.out.println(a == b);
System.out.println(a == c);

System.out.println(b == d);
System.out.println(a.equals(b));
System.out.println(b.equals(d));

B. Implementera en standard equals metod for féljande klass. [5 podng]
public class StringPair {
private String a, b;

public StringPair(String a, String b) {
this.a = a;
this.b = b;

}

public String getFirst() { return a; }
public String getSecond() { return b; }

Uppgift 5: [15 poang totalt] model-view-controller, grafik

Din uppgift ar att implementera en klass SnakeView som ska drva standard klassen JPanel

och fungera som en View klass i ett Snake spel som ar implementerat enligt Model-View-
Controller design monstret. Obs: implementera endast SnakeView klassen.

e Din Klass far en instans av SnakeModel som argument till konstruktéren. Denna
SnakeModel representerar spelytan som ett 20x20-stort rutfilt av celler. Klassen

SnakeModel har en metod getCellAt(int i, int j) som returnerar en Cell.

public enum Cell { SNAKE, FOOD, EMPTY }

e Din SnakeView klass bor rita bakgrunden som svart. Varje SnakeModel cell bér vara 30
pixel hog och bred. En cell som SnakeModel instansen sager innehdller SNAKE bor fyllas
med en vit rektangel. En cell med FOOD boér innehdlla en fylld réd cirkel. En tom cell, dvs

EMPTY, ska forbli svart. Anta att SnakeView ar tillrackligt stor for att allt ska synas.

Obs: Javas import satser kan man lamna bort i 16sningen.

Utdrag ur Javas API. Obs: Man behover inte anvanda alla dessa klasser. Man far ocksa anvanda annat fran Javas API

Class Color extends Object
Color(int r, int g, int b)
Creates an opaque sRGB color with the specified red, green, and blue values in
the range (@ - 255).
BLACK
The color black.
RED
The color red.
WHITE
The color white.
Class Component extends Object
void repaint()
Repaints this component.
Class Graphics extends Object
void fillOval(int x, int y, int width, int height)
Fills an oval bounded by the specified rectangle with the current color.
void fillRect(int x, int y, int width, int height)
Fills the specified rectangle.
void setColor(Color c)
Sets this graphics context's current color to the specified color.
Class HashMap<K,V> extends AbstractMap<K,V> extends Object implements Map<K,V>
HashMap()
Constructs an empty HashMap with the default initial capacity (16) and the
default load factor (0.75).
V get(Object key)
Returns the value to which the specified key is mapped, or null if this map
contains no mapping for the key.
V put(K key, V value)
Associates the specified value with the specified key in this map.
Interface Iterator<E>
boolean hasNext()
Returns true if the iteration has more elements.
E next()
Returns the next element in the iteration.
Class JButton extends AbstractButton extends JComponent extends Object
JButton(String text)
Creates a button with text.
void setBackground(Color bg)
Sets the background color of this component.
Class JComponent extends Container extends Component extends Object
void paintComponent(Graphics g)
Calls the UI delegate's paint method, if the UI delegate is non-null.
Class JPanel extends JComponent extends Container extends Component extends Object
JPanel()
Creates a new JPanel with a double buffer and a flow layout.
Class LinkedList<E> extends AbstractCollection<E> extends Object implements List<E>
LinkedList()
Constructs an empty list.
Interface List<E>
boolean add(E e)
Appends the specified element to the end of this list.
E get(int index)
Returns the element at the specified position in this list.
Iterator<E> iterator()
Returns an iterator over the elements in this list in proper sequence.
int size()
Returns the number of elements in this list.
Class Object
boolean equals(Object obj)
Indicates whether some other object is "equal to" this one.

