
Data	och	Informationsteknik	/	Computer	Science	and	Engineering

Chalmers	University	of	Technology	and	University	of	Gothenburg

Ansvarig	lärare:	Magnus	Myréen

DAT050	Objektorienterad	programmering

Tentamen,	måndag,	2022-01-03,	08:30-12:30

Vitsordsgränser:		3=24p,	4=36p,	5=48p,	max	60p.

Handledaren	Jessica	Barai	besöker	tentan	och	svarar	på	eventuella	frågor	om	uppgifterna.	

Kom	ihåg	att	inte	fastna	på	en	uppgift.	Bestäm	i	förväg	din	egen	tidsgräns	per	uppgift.	Lycka	till!		

Uppgift	1:	[10	poäng	totalt]	grunder	i	objektorientering

A. Förklarar	kort	vad	som	avses	med	"black	box	tänkande"	i	samband	men	objektorienterad	
programmering.	[2	poäng]

B. Förklara	varför	man	kan	säga	att	vissa	välskrivna	objektorienterade	program	är	
modulära.	[3	poäng]

C. Följande	klass	tar	emot	int	värden	med	anrop	till	addInt	och	bör	alltid	returnera	
genomsnittet	av	alla	de	hittills	givna	värdena	med	funktionen	getAverage.	Exempel:	om	
man	lagt	in	värdena	4,	6,	8,	10	med	addInt,	då	bör	getAverage	returnera	7.

public	class	Average	{

				private	int	sum	=	0;

				private	int	count	=	0;

				public	void	addInt(int	n)	{

								sum	=	sum	+	n;

								count	=	count	+	1;

				}

				public	double	getAverage()	{

								return	(double)sum	/	(double)count;

				}

}

Koden	nedan	skriver	ut	Error	och	visar	att	det	finns	en	svaghet/bug	i	koden	ovan.

				Average	a	=	new	Average();

				a.addInt(800000000);

				a.addInt(600000000);

				a.addInt(500000000);

				a.addInt(300000000);

				if	(a.getAverage()	<	0.0)	{

								System.out.println("Error");

				}

Din	uppgift	är	att	skriva	om	Average	klassen	så	att	denna	bug	tas	bort.	[5	poäng] 

Uppgift	2:	[10	poäng	totalt]	gränssnitt

Ett	stort	projekt	använder	följande	interface	för	att	sätta	på	och	stänga	av	grejor.		

/**	An	interface	for	turning	on	and	off	a	device	*/

public	interface	Switch	{

				/**	Command	that	turns	a	device	on	*/

				public	void	turnOn();

				/**	Command	that	turns	a	device	off	*/

				public	void	turnOff();

				/**	Returns	the	current	state	of	the	device	*/

				public	boolean	isOn();

}

Nu	anar	felsökare	att	koden	i	det	stora	projektet	anropar	på	turnOn	och	turnOff	i	onödan,	
dvs	turnOn	anropas	på	objektet	som	redan	är	i	on	läge,	och	lika	så	för	turnOff	i	ett	off	läge.	
Man	bör	inte	anropa	på	turnOn	i	on	läget	och	inte	på	turnOff	i	off	läget.

Din	uppgift	är	att	skriva	en	klass	SafeSwitch	som	kan	användas	som	en	wrapper	runt	
existerande	instanser	av	Switch	gränssnittet.	Din	klass	SafeSwitch	bör	implementera	
Switch	gränssnittet	och	ha	följande	konstruktör.	

					

				public	SafeSwitch(Switch	s)	{

Idéen	är	att	instanser	av	SafeSwitch	endast	skickar	vidare	turnOn	och	turnOff	signaler	
till	Switch	instansen	s	när	s	är	i	rätt	läge	för	att	ta	emot	signalen.

Uppgift	3:	[15	poäng	totalt]	listor

Pascals	triangel	ser	ut	som	nedan.	Obs:	Rad	2	kan	räknas	från	rad	1;	rad	3	från	rad	2,	osv.

rad	1:															1

rad	2:													1			1

rad	3:											1			2			1

rad	4:									1			3			3			1

rad	5:							1			4			6			4			1

rad	6:					1			5			10		10			5			1

rad	7:			1			6			15		20		15			6			1

	...

Din	uppgift	är	att	skriva	en	metod	pascalsTriangleLine	i	Java	som	returnerar	rad	
nummer	n	från	triangeln	som	en	lista,	för	vilket	positivt	n	som	helst.	Koden	bör	kasta	ett	
exception	ifall	det	givna	nummer	n	inte	är	positivt.

public	List<Integer>	pascalsTriangleLine(int	n)	{

Exempel:	För	input	4	bör	metoden	returnera	en	lista	som	består	av	1,	3,	3,	1.

Obs:	Koden	behöver	inte	vara	minnessnål,	men	den	måste	vara	lättläst	och	korrekt.

Obs:	Man	behöver	inte	vara	varsam	med	int	typens	begränsningar	i	den	här	uppgiften. 

Uppgift	4:	[10	poäng	totalt]	string,	equals,	referensvärden

A. Vad	skrivs	ut	när	följande	PrintStuff	program	körs?		[5	poäng]

public	class	PrintStuff	{

				public	static	void	main(String[]	args)	{

								String	a	=	"Hello";

								String	b	=	"hello";

								String	c	=	"HELLO";

								a.toUpperCase();

								String	d	=	a.toLowerCase();

								c	=	a;

								System.out.println(a	==	b);

								System.out.println(a	==	c);

								System.out.println(b	==	d);

								System.out.println(a.equals(b));

								System.out.println(b.equals(d));

				}

}

B. Implementera	en	standard	equals	metod	för	följande	klass.		[5	poäng]

public	class	StringPair	{

				private	String	a,	b;

				public	StringPair(String	a,	String	b)	{

								this.a	=	a;

								this.b	=	b;

				}

				public	String	getFirst()	{	return	a;	}

				public	String	getSecond()	{	return	b;	}

}

Uppgift	5:	[15	poäng	totalt]	model-view-controller,	grafik

Din	uppgift	är	att	implementera	en	klass	SnakeView	som	ska	ärva	standard	klassen	JPanel	
och	fungera	som	en	View	klass	i	ett	Snake	spel	som	är	implementerat	enligt	Model-View-
Controller	design	mönstret.	Obs:	implementera	endast	SnakeView	klassen.

• Din	klass	får	en	instans	av	SnakeModel	som	argument	till	konstruktören.	Denna	
SnakeModel	representerar	spelytan	som	ett	20x20-stort	rutfält	av	celler.	Klassen	
SnakeModel	har	en	metod	getCellAt(int	i,	int	j)	som	returnerar	en	Cell.

				public	enum	Cell	{	SNAKE,	FOOD,	EMPTY	}

• Din	SnakeView	klass	bör	rita	bakgrunden	som	svart.	Varje	SnakeModel	cell	bör	vara	30	
pixel	hög	och	bred.	En	cell	som	SnakeModel	instansen	säger	innehåller	SNAKE	bör	fyllas	
med	en	vit	rektangel.	En	cell	med	FOOD	bör	innehålla	en	fylld	röd	cirkel.	En	tom	cell,	dvs	
EMPTY,	ska	förbli	svart.	Anta	att	SnakeView	är	tillräckligt	stor	för	att	allt	ska	synas.

Obs:	Javas	import	satser	kan	man	lämna	bort	i	lösningen. 

Utdrag	ur	Javas	API.												Obs:	Man	behöver	inte	använda	alla	dessa	klasser.	Man	får	också	använda	annat	från	Javas	API.	

Class	Color	extends	Object	

Color(int	r,	int	g,	int	b)

Creates	an	opaque	sRGB	color	with	the	specified	red,	green,	and	blue	values	in	
the	range	(0	-	255).

BLACK

The	color	black.

RED

The	color	red.

WHITE

The	color	white.

Class	Component	extends	Object

void	repaint()

Repaints	this	component.

Class	Graphics	extends	Object

void	fillOval(int	x,	int	y,	int	width,	int	height)

Fills	an	oval	bounded	by	the	specified	rectangle	with	the	current	color.

void	fillRect(int	x,	int	y,	int	width,	int	height)

Fills	the	specified	rectangle.

void	setColor(Color	c)

Sets	this	graphics	context's	current	color	to	the	specified	color.

Class	HashMap<K,V>	extends	AbstractMap<K,V>	extends	Object	implements	Map<K,V>

HashMap()

Constructs	an	empty	HashMap	with	the	default	initial	capacity	(16)	and	the	
default	load	factor	(0.75).

V	get(Object	key)

Returns	the	value	to	which	the	specified	key	is	mapped,	or	null	if	this	map	
contains	no	mapping	for	the	key.

V	put(K	key,	V	value)

Associates	the	specified	value	with	the	specified	key	in	this	map.

Interface	Iterator<E>

boolean	hasNext()

Returns	true	if	the	iteration	has	more	elements.

E	next()

Returns	the	next	element	in	the	iteration.

Class	JButton	extends	AbstractButton	extends	JComponent	extends	Object

JButton(String	text)

Creates	a	button	with	text.

void	setBackground(Color	bg)

Sets	the	background	color	of	this	component.

Class	JComponent	extends	Container	extends	Component	extends	Object

void	paintComponent(Graphics	g)

Calls	the	UI	delegate's	paint	method,	if	the	UI	delegate	is	non-null.

Class	JPanel	extends	JComponent	extends	Container	extends	Component	extends	Object

JPanel()

Creates	a	new	JPanel	with	a	double	buffer	and	a	flow	layout.

Class	LinkedList<E>	extends	AbstractCollection<E>	extends	Object	implements	List<E>

LinkedList()

Constructs	an	empty	list.

Interface	List<E>

boolean	add​(E	e)

Appends	the	specified	element	to	the	end	of	this	list.

E	get(int	index)

Returns	the	element	at	the	specified	position	in	this	list.

Iterator<E>	iterator()

Returns	an	iterator	over	the	elements	in	this	list	in	proper	sequence.

int	size()

Returns	the	number	of	elements	in	this	list.

Class	Object

boolean	equals(Object	obj)

Indicates	whether	some	other	object	is	"equal	to"	this	one.

