
Data	och	Informationsteknik	/	Computer	Science	and	Engineering

Chalmers	University	of	Technology	and	University	of	Gothenburg

Ansvarig	lärare:	Magnus	Myréen

DAT050	Objektorienterad	programmering

Tentamen,	torsdag,	2021-10-28,	08:30-12:30

Vitsordsgränser:		3=24p,	4=36p,	5=48p,	max	60p.

Kom	ihåg	att	inte	fastna	på	en	uppgift.	Bestäm	i	förväg	din	egen	tidsgräns	per	uppgift.	Lycka	till!		

Uppgift	1:	[10	poäng	totalt]	immutable,	aliasing	problem

A. Vad	är	aliasing	problem	och	när	kan	de	förekomma	i	Java	program?	[2	poäng]

B. Förklara	hur	användning	av	immutable	är	ett	sätt	att	undvika	aliasing	problem.	[3	poäng]

C. Är	följande	implementation	av	MyClass	immutable?	Förklara	ditt	svar.	[5	poäng]

import	java.util.LinkedList;

public	class	MyClass	{

				private	LinkedList<Integer>	list;

				public	MyClass(LinkedList<Integer>	list)	{

								this.list	=	list;

				}

				public	int	getLength()	{

								return	list.size();

				}

				public	String	toString()	{

								return	list.toString();

				}

}

Uppgift	2:	[15	poäng	totalt]	att	skriva	klasser

Denna	uppgift	handlar	om	att	skriva	klasser	som	kan	implementera	en	enkel	modell	av	ett	
Ladok	liknande	system,	dvs	ett	system	som	håller	koll	på	olika	resultat	på	olika	kurser	som	
studenter	har	avklarat.	I	denna	uppgift	antar	vi	att	varje	student	kan	unikt	identifieras	med	
en	sträng	(String)	av	deras	personnummer	(kallas	studentID	nedan).	Likaså,	är	kurser	unikt	
identifierade	genom	sin	kurskod	i	String	format.	Betyg	representeras	av:	

public	enum	Grade	{

				FIVE,	FOUR,	THREE,	FAIL

}

A. Implementera	en	klass	StudentData	som	representerar	all	data	detta	Ladok	system	har	
sparat	för	en	student.	Klassen	StudentData	ska	inkludera	följande	metoder.	[6	poäng]

					

/**	givet	en	kurskod,	returnerar	denna	students	betyg;

				kastar	exception	ifall	studenten	inte	har	tagit	denna	kurs	*/

public	Grade	getGrade(String	courseCode)	{	...	}

/**	sparar	ett	betyg	för	denna	student	på	den	givna	kurskoden;

				denna	sparar	över	det	gamla	betyget	om	det	redan	fanns	ett	*/

public	void	storeResult(String	courseCode,	Grade	result)	{	...	}

/**	returnerar	en	mängd	(Set)	som	består	av	alla	kurskoder	som	

				denna	student	har	registrerade	betyg	på.	*/

public	Set<String>	getCoursesTaken()	{	...	}

B. Implementera	en	klass	MiniLadok	som	representerar	detta	Ladok	liknande	system.	Din	
implementation	bör	använda	StudentData	klassen	från	del	A.	Klassen	MiniLadok	bör	
inkludera	följande	metoder.	[9	poäng]

/**	givet	studentens	personnummer	som	string	och	kurskod,				

				returnerar	det	senast	registrerade	betyget.	kastar	exception	

				ifall	inget	resultat	finns	för	den	studenten	och	kursen.	*/

public	Grade	getGrade(String	studentID,	String	courseCode)	{	...	}

/**	returnerar,	för	en	given	kurskod,	en	mapping	från	studenters	

				personnummer	till	deras	betyg	för	den	kurskoden	*/

public	Map<String,Grade>	getCourseInfo(String	courseCode)	{	...	}

Tips:		Det	lönar	sig	att	använda	HashMap	i	både	koden	för	del	A	och	del	B.

Obs:		Man	får	anta	att	indata	aldrig	är	null	till	koden	ovan.

Uppgift	3:	[10	poäng	totalt]	interface,	listor

I	Javas	API	finns	interfacet	Comparable.	Den	har	en	metod	och	det	står	följande	om	den:

public	interface	Comparable<T>	{

		/**	Returns:	a	negative	integer,	zero,	or	a	positive	integer	as	

						this	object	is	less	than,	equal	to,	or	greater	than	the	

						specified	object	o.	*/

		public	int	compareTo(T	o);

}

Anta	att	det	finns	en	klass	Car	som	implementerar	Comparable,	dvs:

public	class	Car	implements	Comparable<Car>	{	…	}

Din	uppgift	är	att	skriva	en	metod	med	följande	signatur,	som	givet	en	lista	av	Car	objekt	
returnerar	den	största	i	listan	enligt	compareTo.	Metoden	bör	kasta	en	exception	ifall	det	
inte	finns	någon	största.	Man	får	anta	att	listan	inte	är	null	och	att	den	inte	innehåller	null.

public	static	Car	getGreatest(List<Car>	list)	{	…	din	kod	…	} 

Uppgift	4:	[15	poäng	totalt]	arv,	arrays

A. Vad	skrivs	ut	när	följande	Test	program	körs?		[9	poäng]

public	class	Test1	{

				public	String	f()	{	return	"1";	}

				public	String	g()	{	return	this.f();	}

}

public	class	Test2	extends	Test1	{

				public	String	f()	{	return	"2";	}

}

public	class	Test3	extends	Test2	{

				public	String	f()	{	return	"x";	}

				public	String	g()	{	return	"3";	}

}

public	class	Test	{

				public	static	void	main(String[]	args)	{

								Test2	t2	=	new	Test2();

								System.out.println(t2.g());

								Test1	t1	=	(Test1)t2;

								System.out.println(t1.g());

								t2	=	new	Test3();

								System.out.println(t2.g());

				}

}

B. Vad	skrivs	ut	när	följande	Main	program	körs?		[6	poäng]

public	class	Main	{

				public	static	int	test(int[]	b)	{

								int[]	c	=	b;

								c[3]	=	0;

								System.out.println(c[0]);

								return	4;

				}

				public	static	void	main(String[]	args)	{

								int[]	a	=	{	1,	2,	3,	4,	5	};

								System.out.println(a[3]);

								test(a);

								System.out.println(a[3]);

				}

}

Uppgift	5:	[10	poäng	totalt]	händelsehantering,	GUI

Implementera	en	klass	DiscoButton	som	på	alla	sätt	fungerar	som	en	vanlig	JButton	men	
med	den	extra	egenskapen	att	DiscoButton	byter	färg	varje	100	millisekunder	till	en	
slumpmässig	ny	färg.	Man	ska	kunna	skapa	en	DiscoButton	med	att	köra	koden	

new	DiscoButton(text),	där	text	är	texten	(String)	som	ska	stå	på	knappen.	

Tips:		Använd	en	Timer	för	köra	koden	som	byter	färgen	på	knappen	varje	100	millisekunder.	
Se	utdraget	ur	Javas	API	på	sista	sidan.	

Utdrag	ur	Javas	API.												Obs:	Man	behöver	inte	använda	alla	dessa	klasser.	Man	får	också	använda	annat	från	Javas	API.	

Class	AbstractButton	extends	JComponent	extends	Object

void	addActionListener(ActionListener	l)

Adds	an	ActionListener	to	the	button.

Interface	ActionListener	

void	actionPerformed(ActionEvent	e)	

Invoked	when	an	action	occurs.	

Class	ActionEvent	extends	AWTEvent	extends	EventObject	extends	Object	

ActionEvent(Object	source,	int	id,	String	command)	

Constructs	an	ActionEvent	object.	

String	getActionCommand()	

Returns	the	command	string	associated	with	this	action.	

Class	Color	extends	Object	

Color(int	r,	int	g,	int	b)

Creates	an	opaque	sRGB	color	with	the	specified	red,	green,	and	blue	values	in	
the	range	(0	-	255).	

Class	HashMap<K,V>	extends	AbstractMap<K,V>	extends	Object	implements	Map<K,V>

HashMap()

Constructs	an	empty	HashMap	with	the	default	initial	capacity	(16)	and	the	
default	load	factor	(0.75).

V	get(Object	key)

Returns	the	value	to	which	the	specified	key	is	mapped,	or	null	if	this	map	
contains	no	mapping	for	the	key.

Set<K>	keySet()

Returns	a	Set	view	of	the	keys	contained	in	this	map.

V	put(K	key,	V	value)

Associates	the	specified	value	with	the	specified	key	in	this	map.

Class	JButton	extends	AbstractButton	extends	JComponent	extends	Object

JButton(String	text)

Creates	a	button	with	text.

void	setBackground(Color	bg)

Sets	the	background	color	of	this	component.

Class	LinkedList<E>	extends	AbstractCollection<E>	extends	Object	implements	List<E>

LinkedList()

Constructs	an	empty	list.

boolean	add​(E	e)

Appends	the	specified	element	to	the	end	of	this	list.

Interface	List<E>

Iterator<E>	iterator()

Returns	an	iterator	over	the	elements	in	this	list	in	proper	sequence.

int	size()

Returns	the	number	of	elements	in	this	list.

Class	Random	extends	Object

Random()

Creates	a	new	random	number	generator.

int	nextInt(int	bound)

Returns	a	pseudorandom,	uniformly	distributed	int	value	between	0	(inclusive)	
and	the	specified	value	(exclusive),	drawn	from	this	random	number	generator's	
sequence.

Class	Timer	extends	Object	

Timer(int	delay,	ActionListener	listener)	

Creates	a	Timer	and	initializes	both	the	initial	delay	and	between-event	delay	
to	delay	milliseconds.	

void	setActionCommand(String	command)	

Sets	the	string	that	will	be	delivered	as	the	action	command	in	ActionEvents	
fired	by	this	timer.	

void	setRepeats(boolean	flag)	

If	flag	is	false,	instructs	the	Timer	to	send	only	one	action	event	to	its	
listeners.	

void	start()	

Starts	the	Timer,	causing	it	to	start	sending	action	events	to	its	listeners.	

