
Data	och	Informationsteknik	/	Computer	Science	and	Engineering

Chalmers	University	of	Technology	and	University	of	Gothenburg

Ansvarig	lärare:	Magnus	Myréen


DAT050	Objektorienterad	programmering


Modellsvar	för	tentamen,	torsdag,	2021-10-28,	08:30-12:30


Vitsordsgränser:		3=24p,	4=36p,	5=48p,	max	60p.


Kom	ihåg	att	inte	fastna	på	en	uppgift.	Bestäm	i	förväg	din	egen	tidsgräns	per	uppgift.	Lycka	till!		


Modellsvar	för	Uppgift	1:	[10	poäng	totalt]	immutable,	aliasing	problem


Obs:	Svaren	behöver	inte	vara	så	här	långa,	men	de	bör	kommunicera	samma	punkter.


A. Aliasing	sker	när	två	referenser	pekar	på	samma	objekt.	Problem	med	aliasing	uppstår	
när	man	glömmer	att	flera	saker	pekar	på	samma	objekt	och	någon	del	av	programmet	
muterar	(dvs	ändrar)	på	objektet	som	flera	delar	av	programmet	pekar	på.	Detta	händer	
lätt	i	Java	program.


B. Man	kan	skriva	sina	klasser	så	att	deras	objekt	inte	går	att	ändra	på.	Sådana	klasser	kallas	
immutable.	Sådana	objekt	skapar	nya	objekt	istället	för	att	mutera	de	existerande	
objekten.	Med	att	använda	immutable	klasser	så	gör	det	inget	om	två	referenser	pekar	på	
samma	objekt	för	att	objekten	kan	aldrig	ändras	och	då	kan	inte	en	del	av	programmet	
ändra	i	misstag	på	objekt	som	en	annan	del	av	programmet	använder.


C. MyClass	är	inte	immutable	för	att	dess	tillstånd,	dvs	list,	kan	ändras	utifrån	pga	att	
objekt	av	typen	LinkedList	är	muterbara.	I	följande	exempel	ser	vi	att	ett	MyClass	
objekt	kan	ändras	och	är	därför	inte	immutable.


		LinkedList<Integer>	l	=	new	LinkedList<Integer>();

		l.add(5);

		MyClass	m	=	new	MyClass(l);

		System.out.println(m.getLength());			//	skriver	ut	1

		l.add(6);

		System.out.println(m.getLength());			//	skriver	ut	2	


Frivillig	extra	förklaring:	


Man	kan	göra	MyClass	till	en	immutable	klass	med	att	ändra	konstruktion	till	följande:


		public	MyClass(LinkedList<Integer>	list)	{

						this.list	=	(LinkedList<Integer>)list.clone();

		}


Denna	version	ser	till	att	ingen	utanför	har	en	pekar	till	instansvariabeln	list	som	i	
MyClass.	Med	denna	korrigerade	version	kommer	kodexemplet	ovan	att	skriva	ut	1	för	
båda	System.out.println	anropen. 



Modellsvar	för	Uppgift	2:	[15	poäng	totalt]	att	skriva	klasser


A.


public	class	StudentData	{


				//	mapping	från	kurskoder	till	betyg

				private	HashMap<String,Grade>	grades	=	new	HashMap<>();


				public	Grade	getGrade(String	courseCode)	{

								Grade	g	=	grades.get(courseCode);

								if	(g	==	null)	{

												throw	new	IllegalArgumentException("Course	not	taken");

								}

								return	g;

				}


				public	void	storeResult(String	courseCode,	Grade	result)	{

								grades.put(courseCode,	result);

				}


				public	Set<String>	getCoursesTaken()	{

								return	grades.keySet();

				}


}


B.


public	class	MiniLadok	{


				//	mapping	från	studentID	till	StudentData	(för	den	studenten)

				private	HashMap<String,StudentData>	allData	=	new	HashMap<>();


				public	Grade	getGrade(String	studentID,	String	courseCode)	{

								StudentData	sd	=	allData.get(studentID);

								if	(sd	==	null)	{

												throw	new	IllegalArgumentException("No	such	student");

								}

								return	sd.getGrade(courseCode);

				}


				public	Map<String,Grade>	getCourseInfo(String	courseCode)	{

								Map<String,Grade>	res	=	new	HashMap<>();

								for	(String	studentID	:	allData.keySet())	{

												try	{

																StudentData	sd	=	allData.get(studentID);

																Grade	g	=	sd.getGrade(courseCode);

																res.put(studentID,g);

												}	catch	(Exception	e)	{

																//	do	nothing,	the	student	has	not	taken	this	course

												}

								}

								return	res;

				}


}




Modellsvar	för	Uppgift	3:	[10	poäng	totalt]	interface,	listor


Följande	svar	räcker:


public	static	Car	getGreatest(List<Car>	list)	{

			if	(list.size()	==	0)	{

							throw	new	IllegalArgumentException("No	such	element");

			}

			Iterator<Car>	it	=	list.iterator();

			Car	max	=	it.next();

			while	(it.hasNext())	{

							Car	temp	=	it.next();

							if	(max.compareTo(temp)	!=	1)	{

											max	=	temp;

							}

			}

			//	extra	kod	skulle	läggas	här,	se	nedan

			return	max;

}


Det	går	att	läsa	uppgiftens	text	på	två	olika	sätt,	specifikt	kan	man	läsa	“Metoden	bör	kasta	en	
exception	ifall	det	inte	finns	någon	största”	så	att	den	bör	kasta	en	exception	ifall	det	inte	
finns	ett	element	som	är	större	än	alla	andra.	Det	är	OK	att	förstå	texten	på	det	sättet.	Detta	
kan	man	implementera	med	att	lägga	till	följande	rader	kod	innan	return.


			Iterator<Car>	it2	=	list.iterator();

			int	count	=	0;	

			while	(it2.hasNext())	{

							Car	temp	=	it2.next();

							if	(max.compareTo(temp)	==	0)	{

											count	=	count	+	1;

							}

			}

			if	(count	>	1)	{

							throw	new	IllegalArgumentException("No	single	max	element.");

			}

		


Oberoende	hur	man	läser	texten	bör	man	kasta	exception	ifall	den	givna	listan	är	tom,	dvs	
list.size()	==	0,	som	i	koden	högst	uppe.	Det	finns	ju	inget	största	element	i	en	tom	lista.


Modellsvar	för	Uppgift	4:	[15	poäng	totalt]	arv,	arrays


(Ingen	förklaring	behövs	för	fulla	poäng	ifall	svaren	är	korrekt.)


A.


2

2

3


B.


4

1

0




Modellsvar	för	Uppgift	5:	[10	poäng	totalt]	händelsehantering,	GUI


public	class	DiscoButton	extends	JButton	implements	ActionListener	{


				private	Random	r	=	new	Random();


				public	DiscoButton(String	text)	{

								super(text);

								Timer	t	=	new	Timer(100,this);

								t.setRepeats(true);

								t.start();

				}


				public	void	actionPerformed(ActionEvent	e)	{

								Color	c	=	new	Color(r.nextInt(256),

																												r.nextInt(256),

																												r.nextInt(256));

								setBackground(c);

				}


}


