
Instruktioner	för	distanstenta


Anvisningar:


Alla	lösningar	bör	skrivas	efter	varandra	i	en	textfil	(.txt).


Filen	måste	börja	med	studentens	namn	och	en	kort	fritext	där	
studenten	intygar	att	alla	lösningar	i	filen	är	skrivna	på	egenhand	utan	
hjälp	från	andra	och	utan	kopering	från	internet.


Varje	svar	måste	börja	med	en	tydlig	rubrik	i	textfilen,	t.ex.:


UPPGIFT	2

=========


Del	A)


...


Del	B)


...


UPPGIFT	3

=========


...


Man	får	ta	kod	från	föreläsningspresentationerna,	sina	egna	
labblösningar	och	man	får	söka	information	om	Javas	API	med	Google.


Man	får	inte	kommunicera	med	andra	studenter	eller	på	annat	sätt	be	
om	lösningar.	Man	får	inte	söka	lösningar	på	internet.


Lösningar	bör	skickas	in	som	en	textfil	(dvs	en	fil	som	slutar	med	.txt)	via	

Canvas	Assignments	innan	tentan	tar	slut,	dvs	innan	klockan	12:30.


Lycka	till!


Kontakt:


Vid	frågor	går	det	att	få	tag	på	examinatorn	Magnus	Myréen	med	att	ringa	
0729744943	under	tentans	gång.	 



Data	och	Informationsteknik	/	Computer	Science	and	Engineering

Chalmers	University	of	Technology	and	University	of	Gothenburg

Ansvarig	lärare:	Magnus	Myréen


DAT050	Objektorienterad	programmering


Tentamen,	onsdag,	2021-08-25,	14:00-18:00


Vitsordsgränser:		3=24p,	4=36p,	5=48p,	max	60p.


Kom	ihåg	att	inte	fastna	på	en	uppgift.	Bestäm	i	förväg	din	egen	tidsgräns	per	uppgift.	Lycka	till!		


Uppgift	1:	[10	poäng	totalt]


A. Java	har	ett	nyckelord	private.	Förklara	betydelsen	av	det	nyckelordet	och	hur	man	
vanligtvis	brukar	använda	det.	[3	poäng]


B. Inkapsling	och	gränssnitt	är	viktiga	koncept	i	objektorientering.	Förklara	dessa	begrepp.	 
[5	poäng]


C. Förklara	kort	vad	UML	diagram	är.	[2	poäng]


Uppgift	2:	[totalt	15	poäng]


Denna	uppgift	handlar	om	att	skriva	en	klass	för	enkla	lottorader	(utan	extra/bonus	siffror).	I	
denna	uppgift	antar	vi	att	lottorader	består	av	7	siffror	där	varje	siffra	är	mellan	1	och	40.	En	
lottorad	får	inte	innehålla	duplikat,	dvs


				1,	20,	32,	20,	7,	40,	2


är	inte	en	giltig	lottorad	för	att	siffran	20	upprepas.	Ordningen	på	siffrorna	spelar	ingen	roll.


Definiera	LottoRow	klassen	så	att	den	har:


A. En	konstruktor	som	givet	sju	tal,	som	en	parameter	av	typen	int[],	skapar	en	instans	av	
LottoRow	som	representerar	den	lottoraden.	Denna	konstruktor	bör	kasta	ett	
IllegalArgumentExcpetion	ifall	det	är	något	som	går	fel,	t.ex.	ifall	det	inte	finns	sju	tal	
i	parametern	int[]	eller	de	talen	av	någon	annan	anledning	inte	är	en	giltig	lottorad.	För	
fulla	poäng	ska	LottoRow	klassen	ska	vara	immutable.	[8	poäng]


B. En	metod	toString	som	returnerar	en	sträng	representation	av	lottoraden.	[3	poäng]


C. En	instansmetod	med	följande	signatur.


					int	countMatches(LottoRow	other)


Denna	ska	returnera	hur	många	siffror	som	stämmer	samman	med	den	andra	raden,	
other.	Exempel:	ifall	raderna	inte	har	någon	siffra	gemensam	ska	denna	metod	returnera	
0.	Ifall	alla	siffror	finns	i	den	andra	lottoraden	då	ska	den	returnera	7.	[4	poäng] 



Uppgift	3:	[10	poäng	totalt]


Denna	uppgift	handlar	om	att	beräkna	en	checksum	(dvs	en	kontrollsiffra)	och	att	skapa	en	
lista	med	den	på	slutet.	Skriv	en	metod	som	tar	som	input	en	lista	an	heltal	(Java	typ:	
List<Integer>)	och	returnerar	en	lista	av	heltal	med	en	extra	siffra	tillagd	på	slutet.	Siffran	
som	läggs	till	på	slutet	bör	vara	summan	av	alla	siffror	i	den	givna	listan	modulus	7001.


Obs:		metoden	får	inte	ändra	i	listan	som	var	given	som	input.


Uppgift	4:	[10	poäng	totalt]


Följande	interface	representerar	en	trädstruktur.	Idén	är	att	getValue()	returnerar	int	
värdet	vid	roten	av	trädet	och	getSubtrees()	returnerar	en	iterator	med	alla	subträd	som	
kan	nås	med	ett	steg	från	denna	roten	av	detta	träd.


		public	interface	Tree	{

				public	int	getValue();

				public	Iter<Tree>	getSubtrees();

		}


Skriv	en	metod	med	följande	signatur	som	beräknar	max	värdet	som	är	sparat	i	ett	träd.


		public	static	int	maxValueOf(Tree	t)	{	...	}


Obs:		man	får	anta	att	det	inte	finns	null	någonstans	och	att	trädet	är	ändligt.


Uppgift	5:	[15	poäng	totalt]


Skriv	ett	litet	grafisk	program	som	mäter	tiden	mellan	musklickar.	Idén	är	att	programmet	har	
ett	tomt	fönster.	När	man	klickar	i	fönstret	skriver	programmet	ut	med	
System.out.println	tiden	i	millisekunder	sedan	man	förra	gången	klickade	i	fönstret.	
Första	gången	man	klickar	ska	den	visa	hur	många	millisekunder	det	har	gått	sedan	
programmet	startade.


Tips:	använd	System.currentTimeMillis()	för	att	få	tiden	i	millisekunder	sedan	1	januari	
1970.	Denna	metod	returnerar	en	long,	vilket	går	att	använda	på	precis	samma	sätt	som	int.



