Data och Informationsteknik / Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
Ansvarig larare: Magnus Myréen

DAT050 Objektorienterad programmering
Modellsvar for tentamen, onsdag, 2021-08-25, 14:00-18:00

Vitsordsgranser: 3=24p, 4=36p, 5=48p, max 60p.

Kom ihag att inte fastna pa en uppgift. Bestam i forvag din egen tidsgrans per uppgift. Lycka till!

Modellsvar for Uppgift 1: [10 poang totalt]

A) Nyckelordet private skrivs pa instans- och klassvariabler, samt metoder. Dessa med detta
nyckelord kan inte kommas &t utifran klassen och ej heller fran subklasser. Det anvands
for att implementera inkapsling, se del B.

B) Inkapsling ar ett centralt koncept i objektorientering. Det betyder att anvdndaren av en
klass inte ska kunna se eller anvinda sig av det interna i en klass. Det som syns utifran av
en klass ar dess granssnitt. Man kan deklarera granssnitt med nyckelordet interface.

C) UML diagram ar diagram som bestar av lador och pilar med annotationer som symboler
och text. Idén med UML diagram &r att de ger en mera abstrakt vy av programmet,
speciellt hur klasser relaterar till varandra.



Modellsvar for Uppgift 2: [totalt 15 poang]

public class LottoRow {
private int[] row = new int[7];

public LottoRow(int[] a) {
if (a == null) {
throw new IllegalArgumentException("Null");
}
if (a.length !=7) {
throw new IllegalArgumentException(“Bad length");
}
for (int i=0; i<7; i++) {
for (int j=1; j<7; j++) {
if (a[i] == a[j]) {
throw new IllegalArgumentException("Duplicate");
¥

}

row[i] = a[i]; // copies content to avoid aliasing

}

public String toString() {
String res = "" + row[@];
for (int j=1; j<7; j++) {
res = res + ", " + row[j];
}

return res;

}

public int countMatches(LottoRow other) {

if (other == null) {

return 0;
}
int r = 9;
for (int i=0; i<7; i++) {

for (int j=0; j<7; j++) {

if (row[i] == row[j]) {
r=r+l;

}

return r;



Modellsvar for Uppgift 3: [10 podng totalt]

public List<Integer> addCheckSum(List<Integer> 1) {
List<Integer> res = new LinkedList<Integer>();
Iterator<Integer> it = l.iterator();
int sum = @;
while (it.hasNext()) {
int k = it.next();
res.add(k);
sum = ((k % 7001) + sum) % 7001; // avoids overflow in +
}
res.add(sum);
return res;

Modellsvar for Uppgift 4: [10 podng totalt]

public static int maxValueOf(Tree t) {

int max = t.getValue();
Iterator<Tree> it = t.getSubtrees();
while (it.hasNext()) {

Tree sub = it.next();

int temp = maxValueOf(sub);

if (temp > max) {

max = temp;

}

}

return max;



Modellsvar for Uppgift 5: [15 podng totalt]

public class Click extends JFrame implements MouselListener {
private long prevClick;

public Click() {
JPanel p = new JPanel();
p.addMouselListener(this);
prevClick = System.currentTimeMillis();
add(p);
pack();
setVisible(true);

}

public void mouseClicked(MouseEvent e) {
long newTime = System.currentTimeMillis();
System.out.println("Time: " + (newTime - prevClick) +
prevClick = newTime;

ms");

}

public void mouseEntered(MouseEvent e) {}
public void mouseExited(MouseEvent e) {}

public void mousePressed(MouseEvent e) {}
public void mouseReleased(MouseEvent e) {}

public static void main(String[] args) {
new Click();

}



