
	
	

Instruktioner	för	distanstenta	
	
	

	
	
	
	
Anvisningar:	
	
Alla	lösningar	bör	skrivas	efter	varandra	i	en	textfil	(.txt).	
	
Filen	måste	börja	med	studentens	namn	och	en	kort	fritext	där	
studenten	intygar	att	alla	lösningar	i	filen	är	skrivna	på	egenhand	utan	
hjälp	från	andra	och	utan	kopering	från	internet.	

	
Varje	svar	måste	börja	med	en	tydlig	rubrik	i	textfilen,	t.ex.:	
	

UPPGIFT	3	
=========	
	
Del	a)	
	
...	
	
Del	b)	
	
...	
	
	
UPPGIFT	4	
=========	
	
...	

	
Man	får	ta	kod	från	föreläsningspresentationerna,	sina	egna	
labblösningar	och	man	får	söka	information	om	Javas	API	med	Google.	
	
Man	får	inte	kommunicera	med	andra	studenter	eller	på	annat	sätt	be	
om	lösningar.	Man	får	inte	söka	lösningar	på	internet.	
	
Lösningar	bör	skickas	in	som	en	textfil	(dvs	en	fil	som	slutar	med	.txt)	via		
Canvas	Assignments	innan	tentan	tar	slut,	dvs	innan	klockan	12:30.	
	
	
Lycka	till!	
	

	
	
Kontakt:	
	
Vid	frågor	går	det	att	få	tag	på	examinatorn	Magnus	Myréen	med	att	ringa	
0729744943	under	tentans	gång.		

	 	

Data	och	Informationsteknik	/	Computer	Science	and	Engineering	
Chalmers	University	of	Technology	and	University	of	Gothenburg	
Ansvarig	lärare:	Magnus	Myréen	
	
	

DAT050	Objektorienterad	programmering	
	

Tentamen,	måndag,	2021-01-04,	08:30-12:30	
	

Vitsordsgränser:		3=24p,	4=36p,	5=48p,	max	60p.	
	
	
Kom	ihåg	att	inte	fastna	på	en	uppgift.	Bestäm	i	förväg	din	egen	tidsgräns	per	uppgift.	Lycka	till!			
	
	
Uppgift	1:	[15	poäng	totalt]	att	skriva	klass,	toString	
	

Denna	uppgift	handlar	om	att	skriva	en	klass	SchoolClass	som	representerar	en	skolklass.	
Instanser	av	SchoolClass	ska	innehålla	följande	information.	[4	poäng]	

• Klassens	namn,	t.ex.	”2D”	eller	”5A”.	

• Namnet	på	klassens	lärare.	

• Namnet	på	alla	klassens	elever.		

SchoolClass	ska	ha	följande	konstruktor:		

• En	konstrukor	som	skapar	en	ny	SchoolClass	instans	givet	klassens	namn	(som	
String)	och	lärarens	namn	(som	String).	[3	poäng]	

SchoolClass	ska	ha	följande	metoder:	

• En	instansmetod	addPupil	för	att	lägga	till	en	ny	elev.	Metoden	bör	ta	namnet	
(String)	på	eleven	som	input,	den	ska	inte	skriva	ut	något	och	den	får	inte	returna	
något.	Metoden	bör	alltså	endast	uppdatera	instansen	tillstånd.	[3	poäng]	

Obs.	Du	får	anta	att	det	inte	kommer	att	finnas	elever	med	samma	namn.	

• En	toString	metod	som	returnerar	en	läsbar	String-representation	av	klassens	
innehåll,	som	nedan.	Denna	toString	metod	får	inte	skriva	ut	något.	[5	poäng]			

	

Klassen	ska	vara	skriven	så	att	följande	kod	som	använder	SchoolClass:	
	
/**	Returnerar	alltid	en	ny	int	array	med	slumpat	innehåll.		
SchoolClass	c	=	new	SchoolClass("2A",	"Pelle	Pedagog");	
c.addPupil("Karl	K");	
c.addPupil("Anna	D");	
c.addPupil("Sofia	S");	
System.out.println(c.toString());	
	

skriver	ut:	
	
[SchoolClass	2A:	Pelle	Pedagog	teaches	Anna	D,	Karl	K,	Sofia	S]	
		

För	fulla	poäng	måste	namnen	på	eleverna	vara	sorterad	i	alfabetisk	ordning	som	ovan.	Du	
får	använda	dig	av	vad	som	helst	från	Javas	API	i	din	lösning.	
	
Din	kod	får	inte	vara	specialiserad	så	att	den	endast	fungera	för	exemplet	ovan.	Din	kod	får	
också	inte	ha	en	gräns	på	hur	många	studenter	som	kan	finnas	i	en	klass.	

	
Tips.	Undvik	användning	av	arrays	i	din	lösning.	
	
Obs.	Din	kod	får	anta	att	användaren	aldrig	anropar	konstruktorn	eller	metoderna	med	null.	

	
Uppgift	2:	[10	poäng	totalt]	private/public,	immutable	

	
Ge	åtminstone	en	bra	orsak	varför	intansvariabler	bör	vara	deklarerade	som	private	i	Java.		
Ditt	svar	måste	bestå	av	åtminstone	ett	kodexempel	plus	förklaring,	dvs	kod	[5	poäng]	och	
text	[5	poäng].	

	

Tips.	Det	är	kanske	enklast	att	svara	på	denna	uppgift	med	att	förklara	hur	en	användare	kan	
söndra	klasser	vars	instansvariabler	är	deklarerade	till	något	annat	än	private.	Tänk	till	
exempel	på	hur	en	användare	kan	söndra	RatNum	klassen	från	Lab	2	ifall	instansvariablerna	
är	deklarerade	som	public.	

	

Obs.	En	välbeskriven	giltig	orsak	är	tillräckligt	för	fulla	poäng.	Man	får	beskriva	flera	orsaker,	
men	notera	att	det	blir	poängavdrag	ifall	svaret	inkluderar	felaktiga	orsaker.		
	
	
	

Uppgift	3:	[15	poäng	totalt]	att	skriva	klass,	interface,	exceptions	
	
a)	 Definiera	en	klass	NoSuchCarException	[3	poäng].	Klassen	behöver	inte	ha	tillstånd,	men	

den	bör	kunna	användas	som	ett	exception.	Förklara	kort	varför	klassen	kan	användas	som	
ett	exception	[2	poäng].	
	

b)	 Din	uppgift	är	att	implementera	en	metod	med	följande	sigatur.	[10	poäng]	
	
public	Car	whichCarToBuy(List<Car>	cars,	int	maxMoneyToSpend)	{	...	}	
		

Metoden	tar	två	parametrar	cars	och	maxMoneyToSpend.	Den	första,	dvs	cars,	är	en	lista	av	
bilar	av	typen	Car,	se	definitionen	nedan.	Den	andra	är	hur	mycket	pengar	som	man	har	att	
spendera	på	ett	bilköp.		
	

public	interface	Car	{	
			public	String	getName();	
			public	int	getPrice();	
}	

	
Metoden	whichCarToBuy	bör	returnera	den	dyraste	bilen	från	listan	cars	som	kan	köpas	
med	pengarna	maxMoneyToSpend.	Om	det	inte	finns	någon	sådan	bil,	då	bör	whichCarToBuy	
kasta	ett	NoSuchCarException.		
	
Obs.	Var	försiktig	med	null	värden	i	din	kod.	Dessa	kan	ju	komma	i	input.		
	
	
	

	 	

Uppgift	4:	[10	poäng	totalt]	testning,	int	typen,	exceptions	
	
Denna	uppgift	handlar	om	att	testa	att	funktionen	myFunction	håller	sig	till	specifikationen	
som	är	skriven	nedan	i	en	Javadoc	kommentar.	
	

public	interface	MyInterface	{	
	
		/**	Denna	metod	får	endast	kasta	ett	exception	ifall	n	är	0	*/	
		public	int	myFunction(int	n);	
	
}	

	
Skriv	en	metod	isOK	med	signaturen	som	nedan.	Metoden	isOK	bör	returnera	true	ifall	
myFunction	inuti	MyInterface	mi	respekterar	sin	specifikation	för	alla	input.		
	

public	boolean	isOK(MyInterface	mi)	{	...	}	
	
Metoden	isOK	får	aldrig	släppa	ut	en	exception,	dvs	den	måste	fånga	och	hantera	alla	
exceptions	som	koden	som	testas	producerar	(oberoende	om	den	testade	koden	har	fel).		
	
Obs.	Specifikationen	säger	inte	att	myFunction	kommer	att	kasta	en	exception	då	n	är	0.	
	
	
	

Uppgift	5:	[10	poäng	totalt]	arv,	händelsehantering,	Javas	API	
	
Implementera	en	knapp-klass	RandomColorButton	som	ärver	JButton	och	som	på	alla	sätt	
beter	sig	som	en	JButton,	förutom	vid	knapptryck.	Vid	varje	knapptryck	bör	en	
RandomColorButton	byta	färg	till	en	slumpmässig	färg.	
	
Tips.	Använd	JButton,	ActionListener,	Random	och	Color	från	Javas	API.	Man	kan	byta	
färg	på	en	knapp	med	att	anropa	setBackground-metoden	i	JButton	klassen.	

