
	
	

Instruktioner	för	distanstenta	
	
	

	
	
	
	
Anvisningar:	
	
Alla	lösningar	bör	skrivas	efter	varandra	i	en	textfil	(.txt).	
	
Filen	måste	börja	med	studentens	namn	och	en	kort	fritext	där	
studenten	intygar	att	alla	lösningar	i	filen	är	skrivna	på	egenhand	utan	
hjälp	från	andra	och	utan	kopering	från	internet.	

	
Varje	svar	måste	börja	med	en	tydlig	rubrik	i	textfilen,	t.ex.:	
	

UPPGIFT	3	
=========	
	
Del	a)	
	
...	
	
Del	b)	
	
...	
	
	
UPPGIFT	4	
=========	
	
...	

	
Man	får	ta	kod	från	föreläsningspresentationerna,	sina	egna	
labblösningar	och	man	får	söka	information	om	Javas	API	med	Google.	
	
Man	får	inte	kommunicera	med	andra	studenter	eller	på	annat	sätt	be	
om	lösningar.	Man	får	inte	söka	lösningar	på	internet.	
	
Lösningar	bör	skickas	in	som	en	textfil	(dvs	en	fil	som	slutar	med	.txt)	via		
Canvas	Assignments	innan	tentan	tar	slut,	dvs	innan	klockan	12:30.	
	
	
Lycka	till!	
	

	
	
Kontakt:	
	
Vid	frågor	går	det	att	få	tag	på	examinatorn	Magnus	Myréen	med	att	ringa	
0729744943	under	tentans	gång.		

	 	

Data	och	Informationsteknik	/	Computer	Science	and	Engineering	
Chalmers	University	of	Technology	and	University	of	Gothenburg	
Ansvarig	lärare:	Magnus	Myréen	
	
	

DAT050	Objektorienterad	programmering	
	

Tentamen,	torsdag,	2020-10-29,	08:30-12:30	
	

Vitsordsgränser:		3=24p,	4=36p,	5=48p,	max	60p.	
	
	
Kom	ihåg	att	inte	fastna	på	en	uppgift.	Bestäm	i	förväg	din	egen	tidsgräns	per	uppgift.	Lycka	till!			
	
	
Uppgift	1:	[10	poäng	totalt]	att	skriva	klass,	equals,	interface	
	

Denna	uppgift	handlar	om	att	skriva	en	klass	Nat	för	naturliga	tal,	dvs	heltal	som	är	icke-
negativa:	0,	1,	2,	3,	4,	osv.	Koden	ska	vara	skriven	så	att:	

• Instaner	av	klassen	är	immutable.		

• Värdet	lagras	som	en	instansvariabel	av	typen	int.		

Klassen	ska	ha	följande	konstruktor:		

• En	konstrukor	som	skapar	en	Nat	instans	på	basis	av	en	given	int	parameter.	Ifall	
det	givna	värdet	är	negativt	ska	ett	exception	kastas.	[2	poäng]	

Klassen	ska	ha	följande	metoder:	

• En	instansmetod	för	addition	som	adderar	det	nuvarande	naturliga	talet	med	ett	
givet	naturligt	tal.	Kasta	en	exception	ifall	talet	inte	längre	ryms	i	en	int.		[2	poäng]	

Tips:	Om	man	adderar	två	positiva	int	tal	och	resultatet	inte	längre	ryms	i	en	int,	då	
är	resultatet	av	additionen	ett	negativt	int	värde,	t.ex.	följande	kod	skriver	ut:	:-)		

								int	i	=	2000000000;	
															if	(i	+	i	<	0)	{	System.out.println(":-)");	}	

• En	liknande	instansmetod	för	subtraktion.	Skriv	koden	så	att	subtraktion	stannar	vid	
noll,	dvs	m	–	n	=	0	om	n	>	m.	Exempel:	5	–	10	=	0.	[2	poäng]	

• En	equals-metod	som	följer	standard	Java	riklinjer	för	equals.	[2	poäng]	

• En	toString	metod.	[1	poäng]		Tips:	String.valueOf	

• Se	till	att	klassen	implementerar	java.lang.Comparable<Nat>.	[1	poäng]	
	
	

Uppgift	2:	[6	poäng	totalt]	testning,	exceptions	
	

Denna	uppgift	handlar	om	att	skriva	kod	som	testar	följande	metod:		
	
/**	Returnerar	alltid	en	ny	int	array	med	slumpat	innehåll.		
				Kastar	aldrig	en	exception.	*/	
public	int[]	createRandomArray()	{	...	}	
	

Din	uppgift	är	att	skriva	testkod	som	kollar	(så	gott	det	går)	att	koden	som	är	gömd	i	...	ovan	
implementerar	specifkiationen	som	står	skrivet	i	Javadoc	kommentaren	ovan.		

Hur	kollar	man	att	resultatet	är	slumpat?	För	slumpningsegenskapen	räcker	det	att	man	kollar	
om	100	anrop	till	createRandomArray	ger	samma	resultat.	Ifall	100	anrop	ger	samma	
resultat,	då	kan	testkoden	dra	slutsatsen	att	createRandomArray	inte	slumpar.	
	
Obs:	Testkoden	får	inte	kasta	exception	oberoende	om	createRandomArray	gör	det	eller	ej.	 	

Uppgift	3:	[15	poäng	totalt]	användning	av	standard	klasser	
	

Denna	uppgift	handlar	om	att	skriva	kod	som	använder	följande	klasser.	
	

/**	Data	om	ett	nätverk	av	landsvägar	*/	
public	class	RoadMap	{	
		...	
		public	Set<RoadSegment>	getRoadsFrom(Place	p)	{	...	}	
}	
	
/**	En	enkelriktad	vägstump	som	har	en	längd	och	en	ändpunkt	*/	
public	class	RoadSegment	{	
		...	
		public	double	getLength()	{	...	}			//	alltid	>	0.0	
		public	Place	getEndPoint()	{	...	}		
}	
	
/**	En	klass	för	platser	*/	
public	class	Place	{		
		...	
		public	boolean	equals(Object	obj)	{	...	}	
}	

	
Set<E>	interfacet	från	Javas	API	(nedan)	representerar	en	matematisk	mängd	av	element	av	
typen	E.	Man	kan	skapa	en	tom	mängd	av	typen	Set<E>	med	new	HashSet<E>().	

	
public	interface	Set<E>	{	
	
		/**	Lägger	till	e	till	mängden	*/	
		public	boolean	add(E	e);	
	
		/**	Kollar	om	Objektet	o	redan	finns	i	mängden	*/	
		public	boolean	contains(Object	o);	
	
		/**	Returnerar	en	Iterator	som	räknar	upp	mängdens	element	*/	
		public	Iterator<E>	iterator();	
	
		...		
}	

	

Obs:	Du	kan	anta	att	det	inte	finns	null	någonstans	och	att	alla	vägar	har	längd	>	0.	

Uppgiften	handlar	om	att	skriva	nya	instansmetoder	för	RoadMap	klassen:	

a) Skriv	en	metod	distance	som,	givet	en	Place	from	och	en	Place	to,	returnerar	
distansen	av	en	väg	som	leder	direkt	från	plasten	from	till	platsen	to.	Ifall	det	finns	
flera	direkta	vägar,	får	koden	välja	vilken	som	helst.	Ett	exception	ska	kastas	om	
det	inte	går	att	köra	direkt	från	plasten	from	till	platsen	to.	[4	poäng]	

b) Skriv	en	metod	distance	som	givet	en	path	array	(av	typen	Place[])	räknar	ut	
vad	distansen	är	om	man	kör	vägar	som	förbinder	platserna	enligt	path,	dvs	om	
man	kör	från	path[i]	direkt	till	path[i+1]	för	alla	värden	av	i.	Ett	exception	ska	
kastas	om	det	inte	går	att	köra	enligt	path	eller	om	path	är	tom.	[4	poäng]		

c) Skriv	en	metod	reachableWithin	som	givet	en	Place	p	och	en	distans	double	d	
returnerar	en	mångd	Set<Place>	som	består	av	alla	platser	man	kan	nå	inom	
distans	d	om	man	börjar	köra	från	plats	p.	[7	poäng]	

Tips:	Tänk	rekursivt!	”Vart	kan	jag	komma	inom	500	m	från	A?”	Om	jag	kan	köra	
från	A	till	B	på	100	m,	då	frågar	jag	mig:	”Vart	kan	jag	komma	inom	400	m	från	B?”		

Obs:	Din	kod	för	del	c)	behöver	inte	vara	snabb,	men	koden	måste	vara	lättläst	och	
returnera	korrekt	resultat.	

Obs:	Du	får	gärna	definiera	egna	privata	hjälpmetoder.	 	

Uppgift	4:	[23	poäng	totalt]	interface,	kopiering,	Java	Generics	
	

Nedan	är	ett	interface	Iter	som	liknar	(men	inte	är	samma	som)	java.util.Iterator.		
	

public	interface	Iter<A>	{	
	
			/**	Returnerar	true	om	det	finns	ett	till	element.	*/	
			public	boolean	hasNext();	
	
			/**	Returnerar	det	nästa	elementet	om	hasNext()	ger	true.	
							Kan	göra	precis	vad	som	helst	ifall	hasNext()	ger	falskt.	*/	
			public	A	next();	
	
			/**	Returnerar	en	djup	kopia	av	sig	själv.	*/	
			public	Iter<A>	clone();	
	
}	

Denna	uppgift	handlar	om	detta	Iter	interface.	Vi	använder	Iter	för	att	representera	
uppräkningar	av	värden.	Uppräkningar	kan	vara	ändliga	eller	oändliga.	

a) Skriv	kod	för	en	klass	ThreesIter	som	implementerar	Iter<Integer>	och	
representerar	en	oändliga	uppräkningen	av	talet	tre:	3,	3,	3,	3,	3,	...	[2	poäng]	

b) Skriv	kod	för	en	klass	OneTwoThreeIter	som	implementerar	Iter<Integer>	och	
representerar	den	ändliga	nummer	uppräkningen:	1,	2,	3.	[2	poäng]	

c) Skriv	en	klass	EmptyIter	som	implementerar	Iter<A>	och	representerar	den	tomma	
uppräkningen,	dvs	en	Iter	som	inte	har	några	element	alls.	[2	poäng]		

d) Skriv	en	klass	AppendIter	som	slår	samman	två	uppräkningar	representerade	som	
Iter<A>.	Klassen	bör	ha	en	konstruktor	med	följande	signatur.	[5	poäng]		

public	AppendIter(Iter<A>	first,	Iter<A>	second)	{	...	}	

Obs:	Kom	ihåg	att	Iter	instanser	är	mutable.	Var	försiktig	med	aliasing	i	din	kod!	Tänk	
t.ex.	att	följande	kod	bör	resultera	i	att	värdet	i	variabeln	a	är	en	instans	som	
representerar	uppräkningen	1,	2,	3,	1,	2,	3.		

Iter<Integer>	a	=	new	OneTwoThreeIter();	
a	=	new	AppendIter(a,	a);	

Obs:	Koden	i	AppendIter	klassen	får	inte	gå	in	i	en	oändlig	loop	om	det	går	att	undvika.	

e) Skriv	en	klassmetod	appendAll	till	AppendIter	som	givet	en	array	av	typen	Iter[]	
slår	samman	alla	givna	Iter	instanser	och	returnerar	en	Iter	som	representerar	den	
sammanslagna	uppräkningen	av	värden.	Du	bör	hantera	varje	null	som	om	den	
representerar	den	tomma	uppräkningen.	[5	poäng]	

f) Skriv	kod	för	en	klass	OnlyEvenIter	som	implementerar	Iter<Integer>	och	har	en	
konstruktor	med	följande	signatur.	[7	poäng]	

public	OnlyEvenIter(Iter<Integer>	it)	{	...	}	

Idén	är	att	OnlyEvenIter	är	samma	som	it	men	lämnar	bort	alla	udda	tal.	Exempel:	
new	OnlyEvenIter(new	OneTwoThreeIter())	producerar	en	siffra	en	gång:	2.	

Obs:	Din	kod	för	OnlyEvenIter	får	inte	fastna	i	en	oändlig	loop	om	det	går	att	undvika.	
	
	
Uppgift	5:	[6	poäng	totalt]	händelsehantering,	arv,	GUI	programmering	

Denna	uppgift	handlar	om	att	implementera	en	JFrame	variant	som	heter	ShakeFrame.	
ShakeFrame	ska	fungera	precis	som	en	vanlig	JFrame,	men	den	ska	ha	en	extra	egenskap:	
varje	gång	musen	rör	sig	över	ShakeFrame	fönstret	ska	fönstret	byta	plats	till	en	
slumpmässig	plats	som	är	5	pixlar	i	x-	och	y-led	från	koordinaterna	50,	50.	Effekten	av	denna	
egenskap	är	att	det	ska	se	ut	som	om	fönstret	skakar	när	musen	åker	över	fönstret.	

Tips:	Använd	MouseMotionListener.		

