
Sample solutions for the examination of
Finite automata and formal languages

(DIT322/TMV028)
from 2021-08-18

Nils Anders Danielsson

Note that in some cases I have not explained “step by step” why a certain
algorithm produces a certain result, even though students who took the exam
were asked to do this.

1. (a) Yes, the right-hand side of every production contains either a single
terminal or exactly two nonterminals.

(b) The CYK table:

{ 𝑆 }
{ 𝑆 } { 𝐵 }
{ 𝐴 } { 𝐵 } { 𝐵 }

𝑎 𝑏 𝑏
(c) There is no such parse tree. Here is the CYK table for the string 𝑎𝑏𝑎:

∅
{ 𝑆 } ∅
{ 𝐴 } { 𝐵 } { 𝐴 }

𝑎 𝑏 𝑎
If there were a parse tree for 𝑎𝑏𝑎 in 𝑃(𝐺, 𝑆), then the topmost cell
in the table would have contained the nonterminal 𝑆. However, this
cell is empty.

2. The following context-free grammar defines the given language:

𝐺 = ({ 𝑆 } , { 0, 1 } , (𝑆 → 0𝑆1 ∣ 𝜀), 𝑆)

We can convert this grammar to a pushdown automaton 𝐴 such that
𝑁(𝐴) = 𝐿(𝐺). If we follow the technique presented in the course, then we

1

get the following automaton:

𝐴 = ({ 𝑞 } , { 0, 1 } , { 𝑆, 0, 1 } , 𝛿, 𝑞, 𝑆, { 𝑞 })

𝛿 ∈ { 𝑞 } × { 𝜀, 0, 1 } × { 𝑆, 0, 1 } → ℘({ 𝑞 } × { 𝑆, 0, 1 }∗)
𝛿(𝑞, 𝜀, 𝑆) = { (𝑞, 0𝑆1), (𝑞, 𝜀) }
𝛿(𝑞, 0, 0) = { (𝑞, 𝜀) }
𝛿(𝑞, 1, 1) = { (𝑞, 𝜀) }
𝛿(𝑞, _, _) = ∅

3. All three regular expressions denote the same language as 1∗:

• 𝐿(𝑒1) = 𝐿(1∗):
(1∗)∗ = { (𝑒∗)∗ = 𝑒∗ }
1∗

• 𝐿(𝑒2) = 𝐿(1∗):
(1∗)+ = { By definition }
1∗(1∗)∗ = { (𝑒∗)∗ = 𝑒∗ }
1∗1∗ = { 𝑒∗𝑒∗ = 𝑒∗ }
1∗

• 𝐿(𝑒3) = 𝐿(1∗):

(1+)∗ = { By definition }
(11∗)∗ = { 𝑒∗ = 𝜀 + 𝑒𝑒∗ }
𝜀 + 11∗(11∗)∗ = { Shifting }
𝜀 + 1(1∗1)∗1∗ = { Denesting }
𝜀 + 1(1 + 1)∗ = { Idempotence }
𝜀 + 11∗ = { 𝑒∗ = 𝜀 + 𝑒𝑒∗ }
1∗

4. (a) First note that, for any regular expressions 𝑒1 and 𝑒2, 𝐿((𝑒∗
1 +𝑒2)∗) =

𝐿((𝑒1 +𝑒2)∗). 𝐿(𝑒∗
1) ⊇ 𝐿(𝑒1), so 𝐿((𝑒∗

1 +𝑒2)∗) ⊇ 𝐿((𝑒1 +𝑒2)∗). To see
that 𝐿((𝑒∗

1 + 𝑒2)∗) ⊆ 𝐿((𝑒1 + 𝑒2)∗), take a string 𝑤 ∈ 𝐿((𝑒∗
1 + 𝑒2)∗).

There must be a natural number 𝑛 and strings 𝑤1, …, 𝑤𝑛 ∈ 𝐿(𝑒∗
1 +𝑒2)

such that 𝑤 = 𝑤1⋯𝑤𝑛. For each string 𝑤𝑖 (𝑖 ∈ { 1, …, 𝑛 }) it must
either be the case that 𝑤𝑖 ∈ 𝐿(𝑒2), or 𝑤𝑖 ∈ 𝐿(𝑒∗

1). In the latter case
there must be some natural number 𝑘𝑖 and strings 𝑤𝑖,1, …, 𝑤𝑖,𝑘𝑖

∈
𝐿(𝑒1) such that 𝑤𝑖 = 𝑤𝑖,1⋯𝑤𝑖,𝑘𝑖

. Thus 𝑤 can be expressed as a
finite sequence of strings in 𝐿(𝑒1) and 𝐿(𝑒2), which means that 𝑤 ∈
𝐿((𝑒1 + 𝑒2)∗).
Let us now convert the regular expression 𝑒′ = (𝑎𝑏 + 𝑏)∗ to an 𝜀-
NFA 𝐴. Instead of using the algorithm from the course text book I
give 𝐴 directly and prove that 𝐿(𝐴) = 𝐿(𝑒′) (by the argument above
𝐿(𝑒′) = 𝐿(𝑒)). Here is 𝐴 (its alphabet is { 𝑎, 𝑏 }):

2

𝑠0 𝑠1

𝑏
𝑎

𝑏

This 𝜀-NFA corresponds to the following system of equations between
languages, where 𝑒0 corresponds to the start state 𝑠0:

𝑒0 = 𝜀 + 𝑎𝑒1 + 𝑏𝑒0
𝑒1 = 𝑏𝑒0

Let us find a solution for 𝑒0. We can start by eliminating 𝑒1:

𝑒0 = 𝜀 + (𝑎𝑏 + 𝑏)𝑒0

Using Arden’s lemma we then get the following unique solution: 𝑒0 =
(𝑎𝑏 + 𝑏)∗. Because 𝑒0 = 𝑒′ we have 𝐿(𝐴) = 𝐿(𝑒′) = 𝐿(𝑒).

(b) The 𝜀-NFA 𝐴 does not make any use of non-determinism or 𝜀-transitions,
so it can be converted directly to a DFA 𝐵:

𝑠0 𝑠1 𝑠2

𝑏
𝑎

𝑏

𝑎

𝑎, 𝑏

The DFA 𝐵 is minimal: all states are accessible, the state 𝑠0 is
distinguishable from the other two (because it is the only accepting
one), and 𝑠1 is distinguishable from 𝑠2 (they are distinguished by the
𝑏-transition, because 𝑠0 and 𝑠2 are distinguishable).

(c) The language 𝐿(𝑒) = 𝐿((𝑎𝑏 + 𝑏)∗) consists of exactly those strings of
zero or more 𝑎’s and 𝑏’s for which every 𝑎 is immediately followed by
a 𝑏.

5. (a) The language 𝐿 is defined mutually with the language 𝐿′ in the
following way:

𝑢 ∈ 𝐿 𝑣 ∈ 𝐿′

𝑢𝑎𝑣 ∈ 𝐿 𝑏 ∈ 𝐿
𝑣 ∈ 𝐿

𝑣𝑎 ∈ 𝐿′

See parts (b) and (c) for a proof showing that 𝐿 = 𝐿(𝐺).
(b) The property 𝐿 ⊆ 𝐿(𝐺) follows from ∀𝑤 ∈ 𝐿. 𝑤 ∈ 𝐿(𝐺, 𝑆), which

is proved mutually with ∀𝑤 ∈ 𝐿′. 𝑤 ∈ 𝐿(𝐺, 𝐴) by induction on the
structure of 𝐿 and 𝐿′. We have three cases to consider:

3

• 𝑏 ∈ 𝐿 : In this case we should prove that 𝑏 ∈ 𝐿(𝐺, 𝑆). We can
construct the following derivation:

𝑆 → 𝑏 ∈ 𝑃
𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑏 ∈ 𝐿L(𝐺, 𝑏)

𝑏 ∈ 𝐿(𝐺, 𝑆)

(Antecedents of the form “𝑎 is a terminal” or “𝐴 is a nonterminal”
are omitted from this and subsequent derivations.)

•
𝑢 ∈ 𝐿 𝑣 ∈ 𝐿′

𝑢𝑎𝑣 ∈ 𝐿 : In this case we should prove that 𝑢𝑎𝑣 ∈ 𝐿(𝐺, 𝑆),
given the inductive hypotheses that 𝑢 ∈ 𝐿(𝐺, 𝑆) and 𝑣 ∈ 𝐿(𝐺, 𝐴).
We can construct the following derivation:

𝑆 → 𝑆𝑎𝐴 ∈ 𝑃
𝑢 ∈ 𝐿(𝐺, 𝑆)

𝑣 ∈ 𝐿(𝐺, 𝐴) 𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑣 ∈ 𝐿L(𝐺, 𝐴)

𝑎𝑣 ∈ 𝐿L(𝐺, 𝑎𝐴)
𝑢𝑎𝑣 ∈ 𝐿L(𝐺, 𝑆𝑎𝐴)

𝑢𝑎𝑣 ∈ 𝐿(𝐺, 𝑆)

•
𝑣 ∈ 𝐿

𝑣𝑎 ∈ 𝐿′ : In this case we should prove that 𝑣𝑎 ∈ 𝐿(𝐺, 𝐴), given
the inductive hypothesis that 𝑣 ∈ 𝐿(𝐺, 𝑆). We can construct the
following derivation:

𝐴 → 𝑆𝑎 ∈ 𝑃
𝑣 ∈ 𝐿(𝐺, 𝑆)

𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑎 ∈ 𝐿L(𝐺, 𝑎)

𝑣𝑎 ∈ 𝐿L(𝐺, 𝑆𝑎)
𝑣𝑎 ∈ 𝐿(𝐺, 𝐴)

(c) The property 𝐿(𝐺) ⊆ 𝐿 follows from ∀𝑤 ∈ 𝐿(𝐺, 𝑆). 𝑤 ∈ 𝐿, which is
proved mutually with ∀𝑤 ∈ 𝐿(𝐺, 𝐴). 𝑤 ∈ 𝐿′ by complete induction
on the lengths of the strings. A derivation of 𝑤 ∈ 𝐿(𝐺, 𝑆) must end
in the following way:

𝑆 → 𝛼 ∈ 𝑃 𝑤 ∈ 𝐿L(𝐺, 𝛼)
𝑤 ∈ 𝐿(𝐺, 𝑆)

There are two possibilities for 𝛼:
• 𝛼 = 𝑏: In this case we have the following derivation, and 𝑤 is

equal to 𝑏:

𝑆 → 𝑏 ∈ 𝑃
𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑏 ∈ 𝐿L(𝐺, 𝑏)

𝑏 ∈ 𝐿(𝐺, 𝑆)

4

We can easily construct a derivation showing that 𝑤 = 𝑏 ∈ 𝐿:

𝑏 ∈ 𝐿
• 𝛼 = 𝑆𝑎𝐴: In this case the derivation must end in the following

way, and 𝑤 must be equal to 𝑢𝑎𝑣 for some 𝑢 ∈ 𝐿(𝐺, 𝑆) and
𝑣 ∈ 𝐿(𝐺, 𝐴):

𝑆 → 𝑆𝑎𝐴 ∈ 𝑃
𝑢 ∈ 𝐿(𝐺, 𝑆)

𝑣 ∈ 𝐿(𝐺, 𝐴) 𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑣 ∈ 𝐿L(𝐺, 𝐴)

𝑎𝑣 ∈ 𝐿L(𝐺, 𝑎𝐴)
𝑢𝑎𝑣 ∈ 𝐿L(𝐺, 𝑆𝑎𝐴)

𝑢𝑎𝑣 ∈ 𝐿(𝐺, 𝑆)
Note that |𝑢| < |𝑤| and |𝑣| < |𝑤|. The inductive hypotheses thus
imply that 𝑢 ∈ 𝐿 and 𝑣 ∈ 𝐿′. We can now construct a derivation
showing that 𝑤 = 𝑢𝑎𝑣 ∈ 𝐿:

𝑢 ∈ 𝐿 𝑣 ∈ 𝐿′

𝑢𝑎𝑣 ∈ 𝐿
A derivation of 𝑤 ∈ 𝐿(𝐺, 𝐴) must end in the following way:

𝐴 → 𝛼 ∈ 𝑃 𝑤 ∈ 𝐿L(𝐺, 𝛼)
𝑤 ∈ 𝐿(𝐺, 𝐴)

Here 𝛼 must be equal to 𝑆𝑎, the derivation must end in the following
way, and 𝑤 must be equal to 𝑢𝑎 for some 𝑢 ∈ 𝐿(𝐺, 𝑆):

𝐴 → 𝑆𝑎 ∈ 𝑃
𝑢 ∈ 𝐿(𝐺, 𝑆)

𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑎 ∈ 𝐿L(𝐺, 𝑎)

𝑢𝑎 ∈ 𝐿L(𝐺, 𝑆𝑎)
𝑢𝑎 ∈ 𝐿(𝐺, 𝐴)

Note that |𝑢| < |𝑤|. One of the inductive hypotheses thus implies
that 𝑢 ∈ 𝐿. We can now construct a derivation showing that 𝑤 =
𝑢𝑎 ∈ 𝐿′:

𝑢 ∈ 𝐿
𝑢𝑎 ∈ 𝐿′

6. 𝑀 is not context-free (and thus also not regular). If 𝑀 were context-free,
then, by the results taken from “Quotients of Context-Free Languages” by
Ginsburg and Spanier, 𝑀 ′ = { 𝑤𝑐𝑤 ∣ 𝑤 ∈ { 𝑎, 𝑏 }∗ } would also be context-
free. Now consider the following function:

ℎ ∈ { 𝑎, 𝑏, 𝑐 } → { 𝑎, 𝑏 }∗

ℎ(𝑎) = 𝑎
ℎ(𝑏) = 𝑏
ℎ(𝑐) = 𝜀

5

The set of context-free languages is closed under string homomorphisms,
so if 𝑀 ′ were context-free, then ℎ(𝑀 ′) = { 𝑤𝑤 ∣ 𝑤 ∈ { 𝑎, 𝑏 }∗ } would also
be context-free. However, this language is not context-free.
𝑁 is regular (and thus also context-free). In fact, 𝑁 = { 𝑎, 𝑏, 𝑐 }∗ (which is
regular). First note that 𝑁 ⊆ { 𝑎, 𝑏, 𝑐 }∗, because no string in 𝑁 contains
any symbol other than 𝑎, 𝑏 or 𝑐. Let us now prove that { 𝑎, 𝑏, 𝑐 }∗ ⊆ 𝑁 .
Take a string 𝑤 ∈ { 𝑎, 𝑏, 𝑐 }∗. We should prove that 𝑤 ∈ 𝑁 . We can do
this by induction on the number of occurrences of 𝑐 in 𝑤. We have two
cases:

• 0: In this case 𝑤 ∈ { 𝑎, 𝑏 }∗, so 𝑤 ∈ 𝑁 by the second rule defining 𝑁 .
• 1 + 𝑛: In this case 𝑤 = 𝑢𝑐𝑣, where 𝑢 ∈ { 𝑎, 𝑏 }∗, 𝑣 ∈ { 𝑎, 𝑏, 𝑐 }∗, and

the number of occurrences of 𝑐 in 𝑣 is 𝑛. By the second rule we get
that 𝑢 ∈ 𝑁 , and by the inductive hypothesis we get that 𝑣 ∈ 𝑁 .
Thus, by the third rule, 𝑤 = 𝑢𝑐𝑣 ∈ 𝑁 .

6

