Sample solutions for the examination of Finite automata and formal languages (DIT322/TMV028) from 2021-08-18

Nils Anders Danielsson

Note that in some cases I have not explained "step by step" why a certain algorithm produces a certain result, even though students who took the exam were asked to do this.

- 1. (a) Yes, the right-hand side of every production contains either a single terminal or exactly two nonterminals.
 - (b) The CYK table:

$$\begin{cases}
\{S\} \\
\{S\} \\
\{A\} \\
\{B\} \\
\{B\} \\
\{B\} \\
a \\
b \\
b
\end{cases}$$

(c) There is no such parse tree. Here is the CYK table for the string *aba*:

If there were a parse tree for aba in P(G, S), then the topmost cell in the table would have contained the nonterminal S. However, this cell is empty.

2. The following context-free grammar defines the given language:

đ

$$G = (\{ S \}, \{ 0, 1 \}, (S \to 0S1 \mid \varepsilon), S)$$

We can convert this grammar to a pushdown automaton A such that N(A) = L(G). If we follow the technique presented in the course, then we

get the following automaton:

$$\begin{split} A &= (\{ q \}, \{ 0, 1 \}, \{ S, 0, 1 \}, \delta, q, S, \{ q \}) \\ \delta &\in \{ q \} \times \{ \varepsilon, 0, 1 \} \times \{ S, 0, 1 \} \rightarrow \wp(\{ q \} \times \{ S, 0, 1 \}^*) \\ \delta(q, \varepsilon, S) &= \{ (q, 0S1), (q, \varepsilon) \} \\ \delta(q, 0, 0) &= \{ (q, \varepsilon) \} \\ \delta(q, 1, 1) &= \{ (q, \varepsilon) \} \\ \delta(q, _, _) &= \emptyset \end{split}$$

3. All three regular expressions denote the same language as 1^* :

$$L(e_1) = L(1^*) \text{:}$$

$$(1^*)^* = \{ \; (e^*)^* = e^* \; \}$$
 1^*

•
$$L(e_2) = L(1^*)$$
:
 $(1^*)^+ = \{ \text{ By definition } \}$
 $1^*(1^*)^* = \{ (e^*)^* = e^* \}$
 $1^*1^* = \{ e^*e^* = e^* \}$
 1^*

•
$$L(e_3) = L(1^*)$$
:

$$\begin{array}{ll} (1^{+})^{*} &= \{ \text{ By definition } \} \\ (11^{*})^{*} &= \{ e^{*} = \varepsilon + ee^{*} \} \\ \varepsilon + 11^{*}(11^{*})^{*} = \{ \text{ Shifting } \} \\ \varepsilon + 1(1^{*}1)^{*}1^{*} = \{ \text{ Denesting } \} \\ \varepsilon + 1(1+1)^{*} = \{ \text{ Idempotence } \} \\ \varepsilon + 11^{*} &= \{ e^{*} = \varepsilon + ee^{*} \} \\ 1^{*} \end{array}$$

4. (a) First note that, for any regular expressions e_1 and e_2 , $L((e_1^*+e_2)^*) = L((e_1+e_2)^*)$. $L(e_1^*) \supseteq L(e_1)$, so $L((e_1^*+e_2)^*) \supseteq L((e_1+e_2)^*)$. To see that $L((e_1^*+e_2)^*) \subseteq L((e_1+e_2)^*)$, take a string $w \in L((e_1^*+e_2)^*)$. There must be a natural number n and strings $w_1, ..., w_n \in L(e_1^*+e_2)^*$ such that $w = w_1 \cdots w_n$. For each string w_i ($i \in \{1, ..., n\}$) it must either be the case that $w_i \in L(e_2)$, or $w_i \in L(e_1^*)$. In the latter case there must be some natural number k_i and strings $w_{i,1}, ..., w_{i,k_i} \in L(e_1)$ such that $w_i = w_{i,1} \cdots w_{i,k_i}$. Thus w can be expressed as a finite sequence of strings in $L(e_1)$ and $L(e_2)$, which means that $w \in L((e_1 + e_2)^*)$.

Let us now convert the regular expression $e' = (ab + b)^*$ to an ε -NFA A. Instead of using the algorithm from the course text book I give A directly and prove that L(A) = L(e') (by the argument above L(e') = L(e)). Here is A (its alphabet is $\{a, b\}$):

This ε -NFA corresponds to the following system of equations between languages, where e_0 corresponds to the start state s_0 :

$$e_0 = \varepsilon + ae_1 + be_0$$
$$e_1 = be_0$$

Let us find a solution for e_0 . We can start by eliminating e_1 :

$$e_0 = \varepsilon + (ab + b)e_0$$

Using Arden's lemma we then get the following unique solution: $e_0 = (ab + b)^*$. Because $e_0 = e'$ we have L(A) = L(e') = L(e).

(b) The ε -NFA A does not make any use of non-determinism or ε -transitions, so it can be converted directly to a DFA B:

The DFA B is minimal: all states are accessible, the state s_0 is distinguishable from the other two (because it is the only accepting one), and s_1 is distinguishable from s_2 (they are distinguished by the *b*-transition, because s_0 and s_2 are distinguishable).

- (c) The language $L(e) = L((ab + b)^*)$ consists of exactly those strings of zero or more *a*'s and *b*'s for which every *a* is immediately followed by a *b*.
- 5. (a) The language L is defined mutually with the language L' in the following way:

$$\begin{array}{ccc} u \in L & v \in L' \\ \hline uav \in L & & \hline b \in L & & \hline va \in L' \\ \end{array}$$

See parts (b) and (c) for a proof showing that L = L(G).

_

(b) The property $L \subseteq L(G)$ follows from $\forall w \in L. \ w \in L(G, S)$, which is proved mutually with $\forall w \in L'. \ w \in L(G, A)$ by induction on the structure of L and L'. We have three cases to consider: • $\overline{b \in L}$: In this case we should prove that $b \in L(G, S)$. We can construct the following derivation:

$$\frac{\frac{\varepsilon \in L_{\mathcal{L}}(G,\varepsilon)}{b \in L_{\mathcal{L}}(G,b)}}{b \in L(G,S)}$$

(Antecedents of the form "a is a terminal" or "A is a nonterminal" are omitted from this and subsequent derivations.) $u \in L \quad v \in L'$

 $uav \in L$: In this case we should prove that $uav \in L(G, S)$, given the inductive hypotheses that $u \in L(G, S)$ and $v \in L(G, A)$. We can construct the following derivation:

$$\label{eq:constraint} \underbrace{\frac{v \in L(G,A) \quad \overline{\varepsilon \in L_{\mathrm{L}}(G,\varepsilon)}}{v \in L_{\mathrm{L}}(G,A)}}_{u \in L(G,S)} \\ \underbrace{\frac{v \in L_{\mathrm{L}}(G,A)}{av \in L_{\mathrm{L}}(G,aA)}}_{uav \in L(G,S)}$$

 $v \in L$

• $va \in L'$: In this case we should prove that $va \in L(G, A)$, given the inductive hypothesis that $v \in L(G, S)$. We can construct the following derivation:

$$\begin{tabular}{c} \hline \hline A \rightarrow Sa \in P \\ \hline \hline & va \in L(G,S) \\ \hline \hline & va \in L_{\rm L}(G,Sa) \\ \hline & va \in L_{\rm L}(G,Sa) \\ \hline & va \in L(G,A) \\ \hline \end{tabular}$$

(c) The property $L(G) \subseteq L$ follows from $\forall w \in L(G, S)$. $w \in L$, which is proved mutually with $\forall w \in L(G, A)$. $w \in L'$ by complete induction on the lengths of the strings. A derivation of $w \in L(G, S)$ must end in the following way:

$$\frac{S \rightarrow \alpha \in P \quad w \in L_{\mathcal{L}}(G, \alpha)}{w \in L(G, S)}$$

There are two possibilities for α :

• $\alpha = b$: In this case we have the following derivation, and w is equal to b:

$$\boxed{ \frac{ S \rightarrow b \in P }{b \in L_{\rm L}(G, \varepsilon) } }{ b \in L_{\rm L}(G, S) } }$$

We can easily construct a derivation showing that $w = b \in L$:

$$b \in L$$

• $\alpha = SaA$: In this case the derivation must end in the following way, and w must be equal to uav for some $u \in L(G, S)$ and $v \in L(G, A)$:

$$\label{eq:constraint} \frac{v \in L(G,A) \quad \varepsilon \in L_{\mathrm{L}}(G,\varepsilon)}{\underbrace{v \in L_{\mathrm{L}}(G,A)}_{av \in L_{\mathrm{L}}(G,aA)}} \\ \frac{v \in L(G,S)}{\underbrace{uav \in L_{\mathrm{L}}(G,SA)}_{uav \in L_{\mathrm{L}}(G,SaA)}} \\ \frac{uav \in L(G,S)}{\underbrace{uav \in L(G,S)}_{uav \in L(G,S)}} \\ \end{array}$$

Note that |u| < |w| and |v| < |w|. The inductive hypotheses thus imply that $u \in L$ and $v \in L'$. We can now construct a derivation showing that $w = uav \in L$:

$$\frac{u \in L \quad v \in L'}{uav \in L}$$

A derivation of $w \in L(G, A)$ must end in the following way:

$$\frac{A \to \alpha \in P \quad w \in L_{\mathcal{L}}(G, \alpha)}{w \in L(G, A)}$$

Here α must be equal to Sa, the derivation must end in the following way, and w must be equal to ua for some $u \in L(G, S)$:

$$\begin{tabular}{c} \underline{\hline (A \rightarrow Sa \in P)} & \underline{u \in L(G,S) & \underline{\varepsilon \in L_{\rm L}(G,\varepsilon)} \\ ua \in L_{\rm L}(G,Sa) \\ ua \in L(G,A) \\ \hline \end{tabular}$$

Note that |u| < |w|. One of the inductive hypotheses thus implies that $u \in L$. We can now construct a derivation showing that $w = ua \in L'$:

$$\frac{u \in L}{ua \in L'}$$

6. *M* is not context-free (and thus also not regular). If *M* were context-free, then, by the results taken from "Quotients of Context-Free Languages" by Ginsburg and Spanier, $M' = \{wcw \mid w \in \{a, b\}^*\}$ would also be context-free. Now consider the following function:

$$\begin{split} h &\in \{ a, b, c \} \rightarrow \{ a, b \}^* \\ h(a) &= a \\ h(b) &= b \\ h(c) &= \varepsilon \end{split}$$

The set of context-free languages is closed under string homomorphisms, so if M' were context-free, then $h(M') = \{ ww \mid w \in \{ a, b \}^* \}$ would also be context-free. However, this language is not context-free.

N is regular (and thus also context-free). In fact, $N = \{a, b, c\}^*$ (which is regular). First note that $N \subseteq \{a, b, c\}^*$, because no string in *N* contains any symbol other than *a*, *b* or *c*. Let us now prove that $\{a, b, c\}^* \subseteq N$. Take a string $w \in \{a, b, c\}^*$. We should prove that $w \in N$. We can do this by induction on the number of occurrences of *c* in *w*. We have two cases:

- 0: In this case $w \in \{a, b\}^*$, so $w \in N$ by the second rule defining N.
- 1 + n: In this case w = ucv, where $u \in \{a, b\}^*$, $v \in \{a, b, c\}^*$, and the number of occurrences of c in v is n. By the second rule we get that $u \in N$, and by the inductive hypothesis we get that $v \in N$. Thus, by the third rule, $w = ucv \in N$.