Sample solutions for the examination of Finite automata and formal languages (DIT322/TMV028) from 2021-08-18

Nils Anders Danielsson

Note that in some cases I have not explained "step by step" why a certain algorithm produces a certain result, even though students who took the exam were asked to do this.

- 1. (a) Yes, the right-hand side of every production contains either a single terminal or exactly two nonterminals.
	- (b) The CYK table:

$$
\begin{array}{c c c c} \{S\} & & \\ \{S\} & \{B\} & \\ \{A\} & \{B\} & \{B\} \\ \hline a & b & b \end{array}
$$

(c) There is no such parse tree. Here is the CYK table for the string aba :

$$
\begin{array}{c}\n\emptyset \\
\{S\} \\
\{A\} \\
\{B\} \\
\{A\} \\
\end{array}
$$

If there were a parse tree for aba in $P(G, S)$, then the topmost cell in the table would have contained the nonterminal S . However, this cell is empty.

2. The following context-free grammar defines the given language:

$$
G = (\{ S \}, \{ 0, 1 \}, (S \to 0S1 \mid \varepsilon), S)
$$

We can convert this grammar to a pushdown automaton A such that $N(A) = L(G)$. If we follow the technique presented in the course, then we get the following automaton:

$$
A = (\{ q \}, \{ 0, 1 \}, \{ S, 0, 1 \}, \delta, q, S, \{ q \})
$$

\n
$$
\delta \in \{ q \} \times \{ \varepsilon, 0, 1 \} \times \{ S, 0, 1 \} \to \wp(\{ q \} \times \{ S, 0, 1 \})^*
$$

\n
$$
\delta(q, \varepsilon, S) = \{ (q, 0S1), (q, \varepsilon) \}
$$

\n
$$
\delta(q, 0, 0) = \{ (q, \varepsilon) \}
$$

\n
$$
\delta(q, 1, 1) = \{ (q, \varepsilon) \}
$$

\n
$$
\delta(q, \ldots) = \emptyset
$$

3. All three regular expressions denote the same language as 1^* :

•
$$
L(e_1) = L(1^*)
$$
:
\n
$$
\begin{aligned}\n(1^*)^* &= \{ (e^*)^* = e^* \} \\
1^* \n\end{aligned}
$$

•
$$
L(e_2) = L(1^*)
$$
:
\n
$$
(1^*)^+ = \{ \text{By definition } \}
$$
\n
$$
1^*(1^*)^* = \{ (e^*)^* = e^* \}
$$
\n
$$
1^*1^* = \{ e^*e^* = e^* \}
$$
\n
$$
1^*
$$

$$
\bullet\ \ L(e_3)=L(1^*)\mathpunct:
$$

$$
(1^+)^* = \{ \text{ By definition } \}
$$

\n
$$
(11^*)^* = \{ e^* = \varepsilon + ee^* \}
$$

\n
$$
\varepsilon + 11^*(11^*)^* = \{ \text{Shifting } \}
$$

\n
$$
\varepsilon + 1(1^*1)^*1^* = \{ \text{Denesting } \}
$$

\n
$$
\varepsilon + 1(1+1)^* = \{ \text{Idempotence } \}
$$

\n
$$
\varepsilon + 11^* = \{ e^* = \varepsilon + ee^* \}
$$

\n
$$
1^*
$$

4. (a) First note that, for any regular expressions e_1 and e_2 , $L((e_1^* + e_2)^*)$ = $L((e_1+e_2)^*)$. $L(e_1^*) \supseteq L(e_1)$, so $L((e_1^*+e_2)^*) \supseteq L((e_1+e_2)^*)$. To see that $L((e_1^* + e_2)^*) \subseteq L((e_1 + e_2)^*)$, take a string $w \in L((e_1^* + e_2)^*)$. There must be a natural number *n* and strings $w_1, ..., w_n \in L(e_1^* + e_2)$ such that $w = w_1 \cdots w_n$. For each string w_i $(i \in \{1, ..., n\})$ it must either be the case that $w_i \in L(e_2)$, or $w_i \in L(e_1^*)$. In the latter case there must be some natural number k_i and strings $w_{i,1}, ..., w_{i,k_i} \in$ $L(e_1)$ such that $w_i = w_{i,1} \cdots w_{i,k_i}$. Thus w can be expressed as a finite sequence of strings in $L(e_1)$ and $L(e_2)$, which means that $w \in$ $L((e_1 + e_2)^*).$

Let us now convert the regular expression $e' = (ab + b)^*$ to an ε -NFA A. Instead of using the algorithm from the course text book I give A directly and prove that $L(A) = L(e')$ (by the argument above $L(e') = L(e)$. Here is A (its alphabet is { a, b }):

This ε -NFA corresponds to the following system of equations between languages, where e_0 corresponds to the start state s_0 :

$$
e_0 = \varepsilon + ae_1 + be_0
$$

$$
e_1 = be_0
$$

Let us find a solution for e_0 . We can start by eliminating e_1 :

$$
e_0 = \varepsilon + (ab + b)e_0
$$

Using Arden's lemma we then get the following unique solution: $e_0 =$ $(ab + b)^*$. Because $e_0 = e'$ we have $L(A) = L(e') = L(e)$.

(b) The ε -NFA A does not make any use of non-determinism or ε -transitions, so it can be converted directly to a DFA B :

The DFA B is minimal: all states are accessible, the state s_0 is distinguishable from the other two (because it is the only accepting one), and s_1 is distinguishable from s_2 (they are distinguished by the b-transition, because s_0 and s_2 are distinguishable).

- (c) The language $L(e) = L((ab + b)^*)$ consists of exactly those strings of zero or more a 's and b 's for which every a is immediately followed by $a\ b.$
- 5. (a) The language L is defined mutually with the language L' in the following way:

$$
\frac{u \in L \quad v \in L'}{uav \in L} \qquad \qquad \frac{v \in L}{b \in L} \qquad \qquad \frac{v \in L}{va \in L'}
$$

See parts (b) and (c) for a proof showing that $L = L(G)$.

L,

(b) The property $L \subseteq L(G)$ follows from $\forall w \in L$. $w \in L(G, S)$, which is proved mutually with $\forall w \in L'. w \in L(G, A)$ by induction on the structure of L and L' . We have three cases to consider:

• $\overline{b \in L}$: In this case we should prove that $b \in L(G, S)$. We can construct the following derivation:

$$
\overline{\frac{S \to b \in P}{b \in L_{\rm L}(G,b)}} \overline{\frac{\varepsilon \in L_{\rm L}(G,\varepsilon)}{b \in L_{\rm L}(G,b)}}
$$

(Antecedents of the form " a is a terminal" or " A is a nonterminal" are omitted from this and subsequent derivations.) $u\in L\quad v\in L'$

• $uav \in L$: In this case we should prove that $uav \in L(G, S)$, given the inductive hypotheses that $u \in L(G, S)$ and $v \in L(G, A)$. We can construct the following derivation:

$$
\cfrac{v \in L(G,A) \quad \cfrac{v \in L_{\rm L}(G,\varepsilon)}{\cfrac{v \in L_{\rm L}(G,A)}{a v \in L_{\rm L}(G,A)}}}{\cfrac{u \in L(G,S)}{a v \in L_{\rm L}(G,aA)}}{\cfrac{u v \in L_{\rm L}(G,SaA)}{u a v \in L(G,S)}}
$$

 $v \in L$

• $va \in L'$: In this case we should prove that $va \in L(G, A)$, given the inductive hypothesis that $v \in L(G, S)$. We can construct the following derivation:

$$
\cfrac{\cfrac{\varepsilon\in L_{\rm L}(G,\varepsilon)}{a\in L_{\rm L}(G,a)}}{\cfrac{v\in L(G,S)}{va\in L_{\rm L}(G,Sa)}}{\cfrac{v a\in L_{\rm L}(G,Sa)}{va\in L(G,A)}}
$$

(c) The property $L(G) \subseteq L$ follows from $\forall w \in L(G, S)$. $w \in L$, which is proved mutually with $\forall w \in L(G, A)$. $w \in L'$ by complete induction on the lengths of the strings. A derivation of $w \in L(G, S)$ must end in the following way:

$$
\frac{S \to \alpha \in P \quad w \in L_{\mathcal{L}}(G,\alpha)}{w \in L(G,S)}
$$

There are two possibilities for α :

• $\alpha = b$: In this case we have the following derivation, and w is equal to b :

$$
\dfrac{\varepsilon\in L_{\mathbf L}(G,\varepsilon)}{S\rightarrow b\in P}\, \dfrac{\varepsilon\in L_{\mathbf L}(G,\varepsilon)}{b\in L_{\mathbf L}(G,b)}\\ b\in L(G,S)
$$

We can easily construct a derivation showing that $w = b \in L$:

$$
b\in L
$$

• $\alpha = SaA$: In this case the derivation must end in the following way, and w must be equal to *uav* for some $u \in L(G, S)$ and $v \in L(G, A)$:

$$
\cfrac{v\in L(G,A)\quad \varepsilon\in L_{\mathcal{L}}(G,\varepsilon)}{\cfrac{v\in L_{\mathcal{L}}(G,A)}{s\rightarrow SaA\in P}}\ \cfrac{u\in L(G,S)}{\cfrac{uv\in L_{\mathcal{L}}(G,SA)}{uv\in L_{\mathcal{L}}(G,SaA)}}
$$

Note that $|u| < |w|$ and $|v| < |w|$. The inductive hypotheses thus imply that $u \in L$ and $v \in L'$. We can now construct a derivation showing that $w = u a v \in L$:

$$
\frac{u \in L \quad v \in L'}{uav \in L}
$$

A derivation of $w \in L(G, A)$ must end in the following way:

$$
\frac{A \to \alpha \in P \quad w \in L_L(G, \alpha)}{w \in L(G, A)}
$$

Here α must be equal to Sa , the derivation must end in the following way, and w must be equal to ua for some $u \in L(G, S)$:

$$
\cfrac{\varepsilon\in L_{\mathcal{L}}(G,\varepsilon)}{A\rightarrow Sa\in P}\ \cfrac{u\in L(G,S)}{\cfrac{u\alpha\in L_{\mathcal{L}}(G,\varepsilon)}{ua\in L_{\mathcal{L}}(G,Sa)}}{ua\in L(G,A)}
$$

Note that $|u| < |w|$. One of the inductive hypotheses thus implies that $u \in L$. We can now construct a derivation showing that $w =$ $ua \in L'$: ∈

$$
u \in L
$$

$$
ua \in L'
$$

6. M is not context-free (and thus also not regular). If M were context-free, then, by the results taken from "Quotients of Context-Free Languages" by Ginsburg and Spanier, $M' = \{ w c w \mid w \in \{ a, b \}^* \}$ would also be contextfree. Now consider the following function:

$$
h \in \{ a, b, c \} \to \{ a, b \}^*
$$

\n
$$
h(a) = a
$$

\n
$$
h(b) = b
$$

\n
$$
h(c) = \varepsilon
$$

The set of context-free languages is closed under string homomorphisms, so if M' were context-free, then $h(M') = \{ ww \mid w \in \{ a, b \}^* \}$ would also be context-free. However, this language is not context-free.

N is regular (and thus also context-free). In fact, $N = \{a, b, c\}^*$ (which is regular). First note that $N \subseteq \{a, b, c\}^*$, because no string in N contains any symbol other than a, b or c. Let us now prove that $\{a, b, c\}^* \subseteq N$. Take a string $w \in \{a, b, c\}^*$. We should prove that $w \in N$. We can do this by induction on the number of occurrences of c in w . We have two cases:

- 0: In this case $w \in \{a, b\}^*$, so $w \in N$ by the second rule defining N.
- 1 + n: In this case $w = ucv$, where $u \in \{a, b\}^*, v \in \{a, b, c\}^*,$ and the number of occurrences of c in v is n . By the second rule we get that $u \in N$, and by the inductive hypothesis we get that $v \in N$. Thus, by the third rule, $w = ucv \in N$.