
Sample solutions for the examination of
Finite automata and formal languages
(DIT321/DIT322/TMV027/TMV028)

from 2021-03-18
Nils Anders Danielsson

Note that in some cases I have not explained “step by step” why a certain
algorithm produces a certain result, even though students who took the exam
were asked to do this.

1. (a) Yes, the right-hand side of every production contains either a single
terminal or exactly two nonterminals.

(b) The CYK table:
{ 𝑆 }

∅ ∅
{ 𝐶 } ∅ { 𝐷 }
{ 𝐴 } { 𝑆 } { 𝐵 } { 𝑆 }

𝑎 𝑠 𝑏 𝑠
(c) A parse tree:

𝑆

𝐶

𝐴

𝑎

𝑆

𝑠

𝐷

𝐵

𝑏

𝑆

𝑠

2. We have that 𝐿(𝑒1) ≠ 𝐿(𝑒2), because 0 ∈ 𝐿(𝑒1), but 0 ∉ 𝐿(𝑒2) (every
string in 𝐿(𝑒2) contains the symbol 1). Furthermore 𝐿(𝑒1) = 𝐿(𝑒3) (and
thus 𝐿(𝑒2) ≠ 𝐿(𝑒3)):

(01∗)+ = { By definition }
01∗(01∗)∗ = { 𝑒∗𝑒∗ = 𝑒∗ }
01∗1∗(01∗)∗ = { Shifting }
01∗(1∗0)∗1∗ = { Denesting }
01∗(1∗ + 0)∗ = { Commutativity }
01∗(0 + 1∗)∗

1

3. (a) The 𝜀-NFA 𝐴 corresponds to the following system of equations be-
tween languages, where 𝑒0 corresponds to the start state 𝑠0:

𝑒0 = 𝜀 + 𝑎𝑒1
𝑒1 = 𝜀𝑒0 + 𝑏𝑒2
𝑒2 = 𝜀 + 𝜀𝑒0 + 𝑎𝑒3
𝑒3 = 𝑏𝑒2

Let us find a solution for 𝑒0. We can start by eliminating 𝑒3:

𝑒0 = 𝜀 + 𝑎𝑒1
𝑒1 = 𝜀𝑒0 + 𝑏𝑒2
𝑒2 = 𝜀 + 𝜀𝑒0 + 𝑎𝑏𝑒2

Let us now eliminate 𝑒2. Using Arden’s lemma we get the unique
solution 𝑒2 = (𝑎𝑏)∗(𝜀 + 𝜀𝑒0) = (𝑎𝑏)∗(𝜀 + 𝑒0):

𝑒0 = 𝜀 + 𝑎𝑒1
𝑒1 = 𝜀𝑒0 + 𝑏(𝑎𝑏)∗(𝜀 + 𝑒0)

We can now eliminate 𝑒1:

𝑒0 = 𝜀 + 𝑎(𝜀𝑒0 + 𝑏(𝑎𝑏)∗(𝜀 + 𝑒0))
= 𝜀 + 𝑎𝑏(𝑎𝑏)∗ + 𝑎(𝜀 + 𝑏(𝑎𝑏)∗)𝑒0
= 𝜀 + (𝑎𝑏)+ + (𝑎 + (𝑎𝑏)+)𝑒0

Using Arden’s lemma we finally get the following unique solution:

𝑒0 = (𝑎 + (𝑎𝑏)+)∗(𝜀 + (𝑎𝑏)+)
= (𝑎 + (𝑎𝑏)+)∗

= (𝑎 + 𝑎𝑏)∗

The penultimate step follows because

(𝑎 + (𝑎𝑏)+)∗ =
(𝑎 + (𝑎𝑏)+)∗𝜀 ⊆
(𝑎 + (𝑎𝑏)+)∗(𝜀 + (𝑎𝑏)+)

and
(𝑎 + (𝑎𝑏)+)∗(𝜀 + (𝑎𝑏)+) ⊆
(𝑎 + (𝑎𝑏)+)∗(𝜀 + 𝑎 + (𝑎𝑏)+) ⊆
(𝑎 + (𝑎𝑏)+)∗(𝜀 + (𝑎 + (𝑎𝑏)+)∗) =
(𝑎 + (𝑎𝑏)+)∗(𝑎 + (𝑎𝑏)+)∗ =
(𝑎 + (𝑎𝑏)+)∗.

The last step follows because 𝑎𝑏 ⊆ (𝑎𝑏)+ and

(𝑎 + (𝑎𝑏)+)∗ ⊆
(𝑎∗ + (𝑎𝑏)∗)∗ ⊆
((𝑎 + 𝑎𝑏)∗)∗ =
(𝑎 + 𝑎𝑏)∗.

2

We get that the regular expression 𝑒 = (𝑎+𝑎𝑏)∗ satisfies 𝐿(𝑒) = 𝐿(𝐴).
(b) If the 𝜀-NFA 𝐴 is converted to a DFA using the subset construction

(with inaccessible states omitted), then we obtain the following DFA
(possibly with different names for the states):

𝑎 𝑏
→ ∗ { 𝑠0 } { 𝑠0, 𝑠1 } ∅
∗ { 𝑠0, 𝑠1 } { 𝑠0, 𝑠1 } { 𝑠0, 𝑠2 }

∅ ∅ ∅
∗ { 𝑠0, 𝑠2 } { 𝑠0, 𝑠1, 𝑠3 } ∅

∗ { 𝑠0, 𝑠1, 𝑠3 } { 𝑠0, 𝑠1 } { 𝑠0, 𝑠2 }
We can rename the states:

𝑎 𝑏
→ ∗𝐴 𝐵 𝐶

∗𝐵 𝐵 𝐷
𝐶 𝐶 𝐶

∗𝐷 𝐸 𝐶
∗𝐸 𝐵 𝐷

Let us now minimise this DFA. Note first that all of its states are
accessible. If the algorithm from the course is used to find equiva-
lent states, then we get the following equivalence classes: { 𝐴, 𝐷 },
{ 𝐵, 𝐸 }, { 𝐶 }. Thus the following DFA 𝐵 is minimal and satisfies
𝐿(𝐵) = 𝐿(𝐴):

𝑎 𝑏
→ ∗𝐴 𝐵 𝐶

∗𝐵 𝐵 𝐴
𝐶 𝐶 𝐶

(c) Using the minimal DFA above, or the regular expression (𝑎+𝑎𝑏)∗, we
can see that the language 𝐿(𝐴) consists of exactly those sequences
of 𝑎’s and 𝑏’s that do not start with a 𝑏 and do not contain two
successive 𝑏’s.

4. Note that the language 𝐿((0 + 01)∗) consists of exactly those sequences
of zeros and ones that do not start with a one and do not contain two
successive ones. Let 𝑀 = (𝑄, { 0, 1 } , Γ, 𝛿, zero, ␣, { accept }), where 𝑄, Γ
and 𝛿 are defined in the following way:

𝑄 = { zero, zero‐or‐one, accept }
Γ = { 0, 1, ␣ }

3

𝛿 ∈ 𝑄 × Γ ⇀ 𝑄 × Γ × { L, R }
𝛿(zero, 0) = (zero‐or‐one, ␣, R)
𝛿(zero, ␣) = (accept, ␣, R)
𝛿(zero‐or‐one, 0) = (zero‐or‐one, ␣, R)
𝛿(zero‐or‐one, 1) = (zero, ␣, R)
𝛿(zero‐or‐one, ␣) = (accept, ␣, R)

The machine always moves to the right. It halts and rejects if the first
symbol (if any) is a one, or if two successive ones are encountered. Oth-
erwise it halts and accepts once it has reached the end of the input.

5. (a) The language is defined in the following way:

𝑢, 𝑣 ∈ 𝐿
𝑎𝑢𝑏𝑣 ∈ 𝐿 𝑏 ∈ 𝐿

See parts (b) and (c) for a proof showing that 𝐿 = 𝐿(𝐺).
(b) The property 𝐿 ⊆ 𝐿(𝐺) follows from ∀𝑤 ∈ 𝐿. 𝑤 ∈ 𝐿(𝐺, 𝑆). Let us

prove the latter statement by induction on the structure of 𝐿. We
have two cases to consider:

• 𝑏 ∈ 𝐿 : In this case we should prove that 𝑏 ∈ 𝐿(𝐺, 𝑆). We can
construct the following derivation:

𝑆 → 𝑏 ∈ 𝑃
𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑏 ∈ 𝐿L(𝐺, 𝑏)

𝑏 ∈ 𝐿(𝐺, 𝑆)
(Antecedents of the form “𝑎 is a terminal” or “𝐴 is a nonterminal”
are omitted from this and subsequent derivations.)

•
𝑢, 𝑣 ∈ 𝐿
𝑎𝑢𝑏𝑣 ∈ 𝐿 : In this case we should prove that 𝑎𝑢𝑏𝑣 ∈ 𝐿(𝐺, 𝑆),

given the inductive hypotheses that 𝑢 ∈ 𝐿(𝐺, 𝑆) and 𝑣 ∈ 𝐿(𝐺, 𝑆).
We can construct the following derivation:

𝑆 → 𝑎𝑆𝑏𝑆 ∈ 𝑃

𝑢 ∈ 𝐿(𝐺, 𝑆)

𝑣 ∈ 𝐿(𝐺, 𝑆) 𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑣 ∈ 𝐿L(𝐺, 𝑆)

𝑏𝑣 ∈ 𝐿L(𝐺, 𝑏𝑆)
𝑢𝑏𝑣 ∈ 𝐿L(𝐺, 𝑆𝑏𝑆)

𝑎𝑢𝑏𝑣 ∈ 𝐿L(𝐺, 𝑎𝑆𝑏𝑆)
𝑎𝑢𝑏𝑣 ∈ 𝐿(𝐺, 𝑆)

(c) The property 𝐿(𝐺) ⊆ 𝐿 follows from ∀𝑤 ∈ 𝐿(𝐺, 𝑆). 𝑤 ∈ 𝐿. Let us
prove this by complete induction on the length of the string. The
derivation of 𝑤 ∈ 𝐿(𝐺, 𝑆) must end in the following way:

𝑆 → 𝛼 ∈ 𝑃 𝑤 ∈ 𝐿L(𝐺, 𝛼)
𝑤 ∈ 𝐿(𝐺, 𝑆)

4

There are two possibilities for 𝛼:
• 𝛼 = 𝑏: In this case we have the following derivation, and 𝑤 is

equal to 𝑏:

𝑆 → 𝑏 ∈ 𝑃
𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑏 ∈ 𝐿L(𝐺, 𝑏)

𝑏 ∈ 𝐿(𝐺, 𝑆)
We can easily construct a derivation showing that 𝑤 = 𝑏 ∈ 𝐿:

𝑏 ∈ 𝐿

• 𝛼 = 𝑎𝑆𝑏𝑆: In this case the derivation must end in the following
way, and 𝑤 must be equal to 𝑎𝑢𝑏𝑣 for some 𝑢 ∈ 𝐿(𝐺, 𝑆) and
𝑣 ∈ 𝐿(𝐺, 𝑆):

𝑆 → 𝑎𝑆𝑏𝑆 ∈ 𝑃

𝑢 ∈ 𝐿(𝐺, 𝑆)

𝑣 ∈ 𝐿(𝐺, 𝑆) 𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑣 ∈ 𝐿L(𝐺, 𝑆)

𝑏𝑣 ∈ 𝐿L(𝐺, 𝑏𝑆)
𝑢𝑏𝑣 ∈ 𝐿L(𝐺, 𝑆𝑏𝑆)

𝑎𝑢𝑏𝑣 ∈ 𝐿L(𝐺, 𝑎𝑆𝑏𝑆)
𝑎𝑢𝑏𝑣 ∈ 𝐿(𝐺, 𝑆)

Note that |𝑢| < |𝑤| and |𝑣| < |𝑤|. The inductive hypothesis thus
implies that 𝑢 ∈ 𝐿 and 𝑣 ∈ 𝐿. We can now construct a derivation
showing that 𝑤 = 𝑎𝑢𝑏𝑣 ∈ 𝐿:

𝑢, 𝑣 ∈ 𝐿
𝑎𝑢𝑏𝑣 ∈ 𝐿

6. 𝑀 is equal to 𝐿(𝑏(𝑐𝑏)∗), and thus regular (and context-free). Proof:

• ∀𝑤 ∈ 𝑀.𝑤 ∈ 𝐿(𝑏(𝑐𝑏)∗): This can be proved by induction on the
structure of 𝑀 . We have two cases:

– 𝑏 ∈ 𝑀 : It is clear that 𝑤 = 𝑏 ∈ 𝐿(𝑏(𝑐𝑏)∗).

–
𝑢, 𝑣 ∈ 𝑀
𝑢𝑐𝑣 ∈ 𝑀 : The inductive hypotheses tell us that 𝑢 ∈ 𝐿(𝑏(𝑐𝑏)∗)

and 𝑣 ∈ 𝐿(𝑏(𝑐𝑏)∗). Thus there are natural numbers 𝑚, 𝑛 ∈ ℕ
such that 𝑢 = 𝑏(𝑐𝑏)𝑚 and 𝑣 = 𝑏(𝑐𝑏)𝑛. We get that 𝑤 = 𝑢𝑐𝑣 =
𝑏(𝑐𝑏)𝑚𝑐𝑏(𝑐𝑏)𝑛 = 𝑏(𝑐𝑏)1+𝑚+𝑛 ∈ 𝐿(𝑏(𝑐𝑏)∗).

• ∀𝑤 ∈ 𝐿(𝑏(𝑐𝑏)∗).𝑤 ∈ 𝑀 : If 𝑤 ∈ 𝐿(𝑏(𝑐𝑏)∗), then 𝑤 = 𝑏(𝑐𝑏)𝑛 for some
𝑛 ∈ ℕ. For each 𝑛 ∈ ℕ, let the proposition 𝑃(𝑛) be 𝑏(𝑐𝑏)𝑛 ∈ 𝑀 . We
can prove ∀𝑛 ∈ ℕ.𝑃 (𝑛) by mathematical induction. There are two
cases:

5

– 0: A derivation can be constructed in the following way:

𝑏 ∈ 𝑀

– 1 + 𝑛: The inductive hypothesis is 𝑃(𝑛), i.e. 𝑏(𝑐𝑏)𝑛 ∈ 𝑀 . A
derivation can be constructed in the following way (note that
𝑏(𝑐𝑏)1+𝑛 = 𝑏(𝑐𝑏)𝑛𝑐𝑏):

𝑏(𝑐𝑏)𝑛 ∈ 𝑀 𝑏 ∈ 𝑀
𝑏(𝑐𝑏)𝑛𝑐𝑏 ∈ 𝑀

𝑁 is not context-free (and thus also not regular). If we assume that 𝑁
is context-free, then we can derive a contradiction. If 𝑁 is context-free,
then 𝑁 ∩ { 𝑎, 𝑏 }∗ is also context-free (because { 𝑎, 𝑏 }∗ is regular). Note
also that every string obtained using the final rule contains the symbol 𝑐,
and no string obtained using only the other two rules contain this symbol,
so 𝑁 ∩ { 𝑎, 𝑏 }∗ = 𝑁 ′, the language that we obtain by removing the final
rule:

𝑏 ∈ 𝑁 ′
𝑢 ∈ { 𝑎, 𝑏 }∗

𝑢𝑢 ∈ 𝑁 ′

If 𝑁 ′ is context-free, then the language 𝑁 ′ ∖ { 𝑏 } = { 𝑢𝑢 ∣ 𝑢 ∈ { 𝑎, 𝑏 }∗ }
is also context-free (because { 𝑏 } is regular). However, this is a contra-
diction: { 𝑢𝑢 ∣ 𝑢 ∈ { 𝑎, 𝑏 }∗ } is not context-free.

6

