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Note that in some cases I have not explained “step by step” why a certain
algorithm produces a certain result, even though students who took the exam
were asked to do this.

1. (a) Yes, the right-hand side of every production contains either a single
terminal or exactly two nonterminals.

(b) The CYK table:

{5}

0 0
{¢y 0 {D}
{Ar {5} {B} {5}

a s b s

(c) A parse tree:
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2. We have that L(e;) # L(ey), because 0 € L(e;), but 0 ¢ L(e,) (every
string in L(ey) contains the symbol 1). Furthermore L(e;) = L(eg) (and
thus L(ey) # L(es)):

(01%)* { By definition }
01*(01*)* {e*e* =e*}
01*1%(01*)* = { Shifting }
01*(1*0)*1* = { Denesting }
01*(1* + 0)* = { Commutativity }
01*(0 + 17)*



3. (a) The e-NFA A corresponds to the following system of equations be-
tween languages, where e, corresponds to the start state s:

ey =€+ aeq

e, = ¢€eq + bey

ey =€+ ey + aeg
ez = bey

Let us find a solution for e;. We can start by eliminating es:

ey =€+ ae
e, = €ey + bey
ey =€+ ey + abey

Let us now eliminate e,. Using Arden’s lemma we get the unique
solution e, = (ab)*(e + cey) = (ab)*(e + ey):

ey =€+ aey

e; = ¢eey + blab)* (e + ¢p)
We can now eliminate e;:

eg =€+ a(eeg + bab)"(e + ¢g))

£+ ab(ab)* + a(e + b(ab)*)e,
=+ (ab)" + (a + (ab)")ey

Using Arden’s lemma we finally get the following unique solution:

e = (a+ (ab)*):(s + (ab)™)
= (a+ (ab)™)
= (a + ab)*

The penultimate step follows because
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We get that the regular expression e = (a+ab)* satisfies L(e) = L(A).

(b) If the e-NFA A is converted to a DFA using the subset construction
(with inaccessible states omitted), then we obtain the following DFA
(possibly with different names for the states):

a b

—*{so} {s0,51} 0
*{sg,51} {50,851} {50,852}

0 0 0

*{ 80,82} {80,51,83 } 0
#{80,81,83 } {50,851} {5052 }

We can rename the states:

a b
—xA B C
*B B D
c C C
«*D FE C
xF B D

Let us now minimise this DFA. Note first that all of its states are
accessible. If the algorithm from the course is used to find equiva-
lent states, then we get the following equivalence classes: { A, D },
{B,E}, {C}. Thus the following DFA B is minimal and satisfies

L(B) = L(A):
a b
—*xA B C
*xB B A
c C C

(c) Using the minimal DFA above, or the regular expression (a+ab)*, we
can see that the language L(A) consists of exactly those sequences
of a’s and b’s that do not start with a b and do not contain two
successive b’s.

4. Note that the language L((0 4 01)*) consists of exactly those sequences
of zeros and ones that do not start with a one and do not contain two
successive ones. Let M = (Q,{0,1},T,4, zero, , { accept }), where @, T
and J are defined in the following way:

Q = { zero, zero-or-one, accept }
F - { O, 17 U }



0e@xT =@ xT'x{LR}

o(zero, 0) = (zero-or-one, ., R)
0(zero, L) = (accept, Uy R)
0(zero-or-one, 0) = (zero-or-one, ., R)
d(zero-or-one, 1) = (zero, Uy R)
d(zero-or-one, ) = (accept, Uy R)

The machine always moves to the right. It halts and rejects if the first
symbol (if any) is a one, or if two successive ones are encountered. Oth-
erwise it halts and accepts once it has reached the end of the input.

5. (a) The language is defined in the following way:

u,v € L
aubv € L beL

See parts (b) and (c¢) for a proof showing that L = L(G).

(b) The property L C L(G) follows from Yw € L. w € L(G,S). Let us
prove the latter statement by induction on the structure of L. We
have two cases to consider:

e b€ L: In this case we should prove that b € L(G, S). We can
construct the following derivation:

e € Ly (G,e)
S—beP belLy(G,D)
be L(G,S)

(Antecedents of the form “a is a terminal” or “A is a nonterminal”
are omitted from this and subsequent derivations.)
u,v € L

e aubv € L: In this case we should prove that aubv € L(G,S),
given the inductive hypotheses that u € L(G, S) and v € L(G, S).
We can construct the following derivation:

ve L(G,S) ee€ L (G,e)
v € L (G, S)
u € L(G,S) bv € Ly (G,bS)
ubv € Ly (G, SbS)
S —aSbS e P aubv € L (G, aSbs)
aubv € L(G, S)

(¢) The property L(G) C L follows from Yw € L(G,S). w € L. Let us
prove this by complete induction on the length of the string. The
derivation of w € L(G,S) must end in the following way:

S—aecP we L (G a)
w € L(G, S)




There are two possibilities for a:

e « = b: In this case we have the following derivation, and w is

equal to b:
e € L (Ge)
S—=beP be L (G))
be L(G,S)

We can easily construct a derivation showing that w =0 € L:

beL

e a = aSbS: In this case the derivation must end in the following
way, and w must be equal to aubv for some u € L(G,S) and

v € L(G,S):
ve L(G,S) ee€ L (G,e)
ve L (G,S)
u € L(G,S) bv € L (G, bS)
ubv € Ly, (G, SbS)
S — aSbS € P aubv € L; (G, aShs)

aubv € L(G, S)

Note that |u| < |w| and |v| < |w|. The inductive hypothesis thus
implies that u € L and v € L. We can now construct a derivation
showing that w = aubv € L:

u,v € L
aubv € L

6. M is equal to L(b(cb)*), and thus regular (and context-free). Proof:

o Yw € Maw € L(b(cb)*): This can be proved by induction on the
structure of M. We have two cases:

— be M : Ttis clear that w =b € L(b(cb)*).
u,v € M

— wcv € M : The inductive hypotheses tell us that u € L(b(cb)*)
and v € L(b(cb)*). Thus there are natural numbers m,n € N
such that u = b(cb)™ and v = b(cb)™. We get that w = ucv =
b(ch)™cb(ch)™ = b(cb)1 ™™ € L(b(cb)*).

e Yw e L(b(cb)*)w € M: If w € L(b(eb)*), then w = b(ch)™ for some
n € N. For each n € N, let the proposition P(n) be b(cb)™ € M. We
can prove Vn € N.P(n) by mathematical induction. There are two
cases:




— 0: A derivation can be constructed in the following way:

be M

— 1+ n: The inductive hypothesis is P(n), i.e. b(cb)” € M. A
derivation can be constructed in the following way (note that
b(cb)™ = b(ch)™cb):

b(cb)y»eM beM
b(cb)"cb € M

N is not context-free (and thus also not regular). If we assume that N
is context-free, then we can derive a contradiction. If N is context-free,
then N N{a,b}" is also context-free (because { a,b}" is regular). Note
also that every string obtained using the final rule contains the symbol ¢,
and no string obtained using only the other two rules contain this symbol,
so NN{a,b} = N’, the language that we obtain by removing the final
rule:

ue{ab}
be N’ uu € N’
If N’ is context-free, then the language N’ \ {b} = {uu|u € {a,b}" }

is also context-free (because { b} is regular). However, this is a contra-
diction: { uu|u € {a,b}" } is not context-free.



