
Sample solutions for the examination of
Finite automata and formal languages
(DIT321/DIT322/TMV027/TMV028)

from 2020-08-19
Nils Anders Danielsson

Note that in some cases I have not explained “step by step” why a certain
algorithm produces a certain result, even though students who took the exam
were asked to do this.

1. (a) Yes, the right-hand side of every production contains either a single
terminal or exactly two nonterminals.

(b) The CYK table:

{ 𝑆 }
{ 𝑆 } { 𝑆, 𝐴 }

∅ { 𝑆, 𝐴 } { 𝑆, 𝐴 }
{ 𝐵 } { 𝐴 } { 𝐴 } { 𝐴 }

𝑏 𝑎 𝑎 𝑎
(c) The grammar is ambiguous, because there are two distinct leftmost

derivations of 𝑎𝑎𝑎:

𝑆 ⇒lm 𝐴𝐴 ⇒lm 𝑎𝐴 ⇒lm 𝑎𝐴𝐴 ⇒lm 𝑎𝑎𝐴 ⇒lm 𝑎𝑎𝑎
𝑆 ⇒lm 𝐴𝐴 ⇒lm 𝐴𝐴𝐴 ⇒lm 𝑎𝐴𝐴 ⇒lm 𝑎𝑎𝐴 ⇒lm 𝑎𝑎𝑎

2. The Turing machine is (𝑄, { 0, 1 } , Γ, 𝛿, start, ␣, { accept }), where 𝑄, Γ
and 𝛿 are defined in the following way:

𝑄 = { start, zeros, ones, blank, accept }
Γ = { 0, 1, ␣ }

1

𝛿 ∈ 𝑄 × Γ ⇀ 𝑄 × Γ × { L, R }
𝛿(start, 0) = (ones, ␣, R)
𝛿(start, 1) = (zeros, ␣, R)
𝛿(zeros, 0) = (zeros, ␣, R)
𝛿(zeros, 1) = (blank, ␣, R)
𝛿(ones, 1) = (ones, ␣, R)
𝛿(ones, 0) = (blank, ␣, R)
𝛿(blank, ␣) = (accept, ␣, R)

The machine always moves to the right. It accepts if and only if it finds

• a 0, zero or more repetitions of 1, and a 0, followed by a blank, or
• a 1, zero or more repetitions of 0, and a 1, followed by a blank.

3. (a) The NFA 𝐴 corresponds to the following system of equations between
languages, where 𝑒0 corresponds to the start state 𝑠0:

𝑒0 = 𝑎(𝑒0 + 𝑒1) + 𝑏𝑒0
𝑒1 = 𝑏𝑒2
𝑒2 = 𝜀 + 𝑏𝑒2

Let us solve for 𝑒0. Using Arden’s lemma we get the unique solution
𝑒2 = 𝑏∗:

𝑒0 = 𝑎(𝑒0 + 𝑒1) + 𝑏𝑒0
𝑒1 = 𝑏𝑏∗ = 𝑏+

Let us now eliminate 𝑒1:

𝑒0 = 𝑎(𝑒0 + 𝑏+) + 𝑏𝑒0 = (𝑎 + 𝑏)𝑒0 + 𝑎𝑏+

Using Arden’s lemma we get the unique solution 𝑒0 = (𝑎 + 𝑏)∗𝑎𝑏+.
Thus the regular expression 𝑒 = (𝑎 + 𝑏)∗𝑎𝑏+ satisfies 𝐿(𝑒) = 𝐿(𝐴).

(b) If the NFA 𝐴 is converted to a DFA using the subset construction
(with inaccessible states omitted), then we obtain the following DFA
(possibly with different names for the states):

𝑎 𝑏
→ { 𝑠0 } { 𝑠0, 𝑠1 } { 𝑠0 }
{ 𝑠0, 𝑠1 } { 𝑠0, 𝑠1 } { 𝑠0, 𝑠2 }

∗ { 𝑠0, 𝑠2 } { 𝑠0, 𝑠1 } { 𝑠0, 𝑠2 }
Let us now minimise this DFA. Note first that all of its states are
accessible. If the algorithm from the course is used to find equivalent
states, then we see that every state of this DFA is distinguishable
from every other state. Thus the DFA is already minimal.

(c) The language 𝐿(𝐴) is equal to 𝐿((𝑎 + 𝑏)∗𝑎𝑏+). Thus the language
consists of all strings of the following form:

2

• First an arbitrary string consisting of 𝑎’s and 𝑏’s,
• then exactly one 𝑎,
• and finally one or more 𝑏’s.

4. Let us start by converting the three 𝜀-NFAs to equivalent DFAs by using
the subset construction (with inaccessible states omitted):

(a)

𝑎 𝑏
→ 𝑠0 𝑠1 𝑠2

𝑠1 𝑠1 𝑠3
∗𝑠2 𝑠4 𝑠5
∗𝑠3 𝑠5 𝑠5
𝑠4 𝑠5 𝑠2
𝑠5 𝑠5 𝑠5

(b)

𝑎 𝑏
→ 𝑠0 𝑠1 𝑠2

∗𝑠1 𝑠3 𝑠2
𝑠2 𝑠4 𝑠5
𝑠3 𝑠3 𝑠2

∗𝑠4 𝑠5 𝑠2
𝑠5 𝑠5 𝑠5

(c)

𝑎 𝑏
→ 𝑠0 𝑠1 𝑠2

𝑠1 𝑠1 𝑠3
∗𝑠2 𝑠4 𝑠5
∗𝑠3 𝑠5 𝑠5
𝑠4 𝑠5 𝑠2
𝑠5 𝑠5 𝑠5

The first and last 𝜀-NFAs were converted to equal DFAs, so they denote
the same language. We can also see that the first and second 𝜀-NFAs do
not denote the same language, because the second one accepts the string
𝑎, which is not accepted by the first one.

5. (a) The grammar is 𝐺 = ({ 𝑋, 𝑌 } , { 𝑎, 𝑏 } , 𝑃 , 𝑋), where the set of pro-
ductions 𝑃 contains exactly 𝑋 → 𝑎 | 𝑋𝑏𝑌 and 𝑌 → 𝑎𝑋 𝑋. See parts
(b) and (c) for a proof showing that 𝐿(𝐺) = 𝑋.

(b) The property 𝑋 ⊆ 𝐿(𝐺) follows from ∀𝑤 ∈ 𝑋. 𝑤 ∈ 𝐿(𝐺, 𝑋). Let
us prove the latter statement, mutually with ∀𝑤 ∈ 𝑌 . 𝑤 ∈ 𝐿(𝐺, 𝑌),
by induction on the structure of 𝑋 and 𝑌 . We have three cases to
consider:

3

• A case corresponding to 𝑎 ∈ 𝑋 . In this case we should prove
that 𝑎 ∈ 𝐿(𝐺, 𝑋). We can construct the following derivation:

𝑋 → 𝑎 ∈ 𝑃
𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑎 ∈ 𝐿L(𝐺, 𝑎)

𝑎 ∈ 𝐿(𝐺, 𝑋)
(Antecedents of the form “𝑎 is a terminal” or “𝐴 is a nonterminal”
are omitted from this and subsequent derivations.)

• A case corresponding to
𝑢 ∈ 𝑋 𝑣 ∈ 𝑌

𝑢𝑏𝑣 ∈ 𝑋 . In this case we should
prove that 𝑢𝑏𝑣 ∈ 𝐿(𝐺, 𝑋), given the inductive hypotheses that
𝑢 ∈ 𝐿(𝐺, 𝑋) and 𝑣 ∈ 𝐿(𝐺, 𝑌). We can construct the following
derivation:

𝑋 → 𝑋𝑏𝑌 ∈ 𝑃
𝑢 ∈ 𝐿(𝐺, 𝑋)

𝑣 ∈ 𝐿(𝐺, 𝑌) 𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑣 ∈ 𝐿L(𝐺, 𝑌)

𝑏𝑣 ∈ 𝐿L(𝐺, 𝑏𝑌)
𝑢𝑏𝑣 ∈ 𝐿L(𝐺, 𝑋𝑏𝑌)

𝑢𝑏𝑣 ∈ 𝐿(𝐺, 𝑋)

• A case corresponding to
𝑢, 𝑣 ∈ 𝑋
𝑎𝑢𝑣 ∈ 𝑌 . In this case we should prove

that 𝑎𝑢𝑣 ∈ 𝐿(𝐺, 𝑌), given the inductive hypotheses that 𝑢 ∈
𝐿(𝐺, 𝑋) and 𝑣 ∈ 𝐿(𝐺, 𝑋). We can construct the following deriva-
tion:

𝑌 → 𝑎𝑋 𝑋 ∈ 𝑃

𝑢 ∈ 𝐿(𝐺, 𝑋)
𝑣 ∈ 𝐿(𝐺, 𝑋) 𝜀 ∈ 𝐿L(𝐺, 𝜀)

𝑣 ∈ 𝐿L(𝐺, 𝑋)
𝑢𝑣 ∈ 𝐿L(𝐺, 𝑋 𝑋)

𝑎𝑢𝑣 ∈ 𝐿L(𝐺, 𝑎𝑋 𝑋)
𝑎𝑢𝑣 ∈ 𝐿(𝐺, 𝑌)

(c) The property 𝐿(𝐺) ⊆ 𝑋 follows from

∀𝑤 ∈ 𝐿(𝐺, 𝑋). 𝑤 ∈ 𝑋. (1)

Let us prove this, mutually with

∀𝑤 ∈ 𝐿(𝐺, 𝑌). 𝑤 ∈ 𝑌 , (2)

by complete induction on the lengths of the strings. We can begin
by proving the first statement (1). The derivation of 𝑤 ∈ 𝐿(𝐺, 𝑋)
must end in the following way:

𝑋 → 𝛼 ∈ 𝑃 𝑤 ∈ 𝐿L(𝐺, 𝛼)
𝑤 ∈ 𝐿(𝐺, 𝑋)

4

There are two possibilities for 𝛼:
• 𝛼 = 𝑎: In this case the derivation must end in the following way,

and 𝑤 must be equal to 𝑎:

𝑋 → 𝑎 ∈ 𝑃
𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑎 ∈ 𝐿L(𝐺, 𝑎)

𝑎 ∈ 𝐿(𝐺, 𝑋)
We can easily construct a derivation showing that 𝑤 = 𝑎 ∈ 𝑋:

𝑎 ∈ 𝑋
• 𝛼 = 𝑋𝑏𝑌 : In this case the derivation must end in the following

way, and 𝑤 must be equal to 𝑢𝑏𝑣 for some 𝑢 ∈ 𝐿(𝐺, 𝑋) and
𝑣 ∈ 𝐿(𝐺, 𝑌):

𝑋 → 𝑋𝑏𝑌 ∈ 𝑃
𝑢 ∈ 𝐿(𝐺, 𝑋)

𝑣 ∈ 𝐿(𝐺, 𝑌) 𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑣 ∈ 𝐿L(𝐺, 𝑌)

𝑏𝑣 ∈ 𝐿L(𝐺, 𝑏𝑌)
𝑢𝑏𝑣 ∈ 𝐿L(𝐺, 𝑋𝑏𝑌)

𝑢𝑏𝑣 ∈ 𝐿(𝐺, 𝑋)
Note that |𝑢| < |𝑤| and |𝑣| < |𝑤|. The inductive hypotheses thus
imply that 𝑢 ∈ 𝑋 and 𝑣 ∈ 𝑌 . We can now construct a derivation
showing that 𝑤 = 𝑢𝑏𝑣 ∈ 𝑋:

𝑢 ∈ 𝑋 𝑣 ∈ 𝑌
𝑢𝑏𝑣 ∈ 𝑋

Let us now prove the second statement (2). The derivation of 𝑤 ∈
𝐿(𝐺, 𝑌) must end in the following way, and 𝑤 must be equal to 𝑎𝑢𝑣
for some 𝑢, 𝑣 ∈ 𝐿(𝐺, 𝑋):

𝑌 → 𝑎𝑋 𝑋 ∈ 𝑃

𝑢 ∈ 𝐿(𝐺, 𝑋)
𝑣 ∈ 𝐿(𝐺, 𝑋) 𝜀 ∈ 𝐿L(𝐺, 𝜀)

𝑣 ∈ 𝐿L(𝐺, 𝑋)
𝑢𝑣 ∈ 𝐿L(𝐺, 𝑋 𝑋)

𝑎𝑢𝑣 ∈ 𝐿L(𝐺, 𝑎𝑋 𝑋)
𝑎𝑢𝑣 ∈ 𝐿(𝐺, 𝑌)

Note that |𝑢| < |𝑤| and |𝑣| < |𝑤|. One of the inductive hypotheses
thus implies that 𝑢 ∈ 𝑋 and 𝑣 ∈ 𝑋. We can conclude by constructing
a derivation showing that 𝑤 = 𝑎𝑢𝑣 ∈ 𝑌 :

𝑢, 𝑣 ∈ 𝑋
𝑎𝑢𝑣 ∈ 𝑌

5

6. (a) Let us denote the language by 𝐿. It is equal to 𝑀𝑁 , where

𝑀 = { 𝑢 ∣ 𝑢 ∈ { 𝑎, 𝑏 }∗ } = { 𝑎, 𝑏 }∗ , and
𝑁 = { 𝑣𝑣 ∣ 𝑣 ∈ { 𝑎, 𝑏 }∗ , |𝑣| ≤ 3 } .

The language 𝑀 is regular because it is generated by the regular
expression (𝑎 + 𝑏)∗. 𝑁 is regular because it is finite (and a finite
language { 𝑤1, …, 𝑤𝑛 }, where 𝑛 ∈ ℕ, is regular because it is generated
by the regular expression 𝑤1 + ⋯ + 𝑤𝑛). Finally the set of regular
languages is closed under concatenation, so 𝐿 = 𝑀𝑁 is regular.
Every regular language is context-free, so 𝐿 is also context-free.

(b) Let us denote the language by 𝑀 . It is equal to { 𝑐 } 𝐿, where

𝐿 = { 𝑤𝑤R ∣ 𝑤 ∈ { 𝑎, 𝑏, 𝑐 }∗ } .

Both { 𝑐 } and 𝐿 are context-free. Thus, because the set of context-
free languages is closed under concatenation, we get that 𝑀 = { 𝑐 } 𝐿
is context-free.
We also have that 𝐿 is not regular. Thus it follows from the following
lemma that 𝑀 is not regular.
Lemma. If Σ is an alphabet with 𝑎 ∈ Σ, 𝐿 ⊆ Σ∗, and { 𝑎𝑣 | 𝑣 ∈ 𝐿 }
is regular, then 𝐿 is regular.

Proof. Take a DFA 𝐷 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) for { 𝑎𝑣 | 𝑣 ∈ 𝐿 }. We can
construct a DFA 𝐷′ = (𝑄, Σ, 𝛿, 𝛿(𝑞0, 𝑎), 𝐹), for which we have

𝐿(𝐷′) = { 𝑤 ∈ Σ∗ ∣ ̂𝛿(𝛿(𝑞0, 𝑎), 𝑤) ∈ 𝐹 }
= { 𝑤 ∈ Σ∗ ∣ ̂𝛿(𝑞0, 𝑎𝑤) ∈ 𝐹 }
= { 𝑤 ∈ Σ∗ | 𝑎𝑤 ∈ { 𝑎𝑣 | 𝑣 ∈ 𝐿 } }
= 𝐿.

Thus 𝐿 is regular, because it is the language of the DFA 𝐷′.

6

