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1. (a) Yes, the right-hand side of every production contains either a single
terminal or exactly two nonterminals.

(b) The CYK table:

{ 𝑆, 𝐴 }
{ 𝑆, 𝐴 } ∅
{ 𝑆, 𝐴 } ∅ ∅
{ 𝐴 } { 𝐵 } { 𝐵 } { 𝐵 }

𝑎 𝑏 𝑏 𝑏
(c) We have 𝑎𝑏𝑏𝑏 ∈ 𝐿(𝐺, 𝑁) if and only if 𝑁 is in the “top-most” cell of

the CYK table for 𝑎𝑏𝑏𝑏. Thus we have 𝑎𝑏𝑏𝑏 ∈ 𝐿(𝐺, 𝑆) and 𝑎𝑏𝑏𝑏 ∈
𝐿(𝐺, 𝐴), but not 𝑎𝑏𝑏𝑏 ∈ 𝐿(𝐺, 𝐵).

2. The Turing machine is (𝑄, { 0, 1, 2, 3 } , Γ, 𝛿, zero, ␣, { accept }), where 𝑄,
Γ and 𝛿 are defined in the following way:

𝑄 = { zero, one‐or‐three, two, blank, accept }
Γ = { 0, 1, 2, 3, ␣ }

𝛿 ∈ 𝑄 × Γ ⇀ 𝑄 × Γ × { L, R }
𝛿(zero, 0) = (one‐or‐three, ␣, R)
𝛿(one‐or‐three, 1) = (two, ␣, R)
𝛿(one‐or‐three, 3) = (blank, ␣, R)
𝛿(two, 2) = (one‐or‐three, ␣, R)
𝛿(blank, ␣) = (accept, ␣, R)

The machine always moves to the right. It accepts if and only if it finds a
0, zero or more repetitions of 12, and a 3, followed by a blank.
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3. (a) The 𝜀-NFA 𝐴 corresponds to the following system of equations be-
tween languages, where 𝑒0 corresponds to the start state 𝑠0:

𝑒0 = 𝑒1
𝑒1 = 𝑎(𝑒1 + 𝑒2) + 𝑏𝑒0
𝑒2 = 𝜀 + 𝑏(𝑒0 + 𝑒1) + 𝑒1

Let us solve for 𝑒0. We can start by eliminating 𝑒0 (while remember-
ing that 𝑒0 = 𝑒1):

𝑒1 = 𝑎(𝑒1 + 𝑒2) + 𝑏𝑒1
𝑒2 = 𝜀 + 𝑏(𝑒1 + 𝑒1) + 𝑒1

= 𝜀 + (𝑏 + 𝜀)𝑒1
Let us now eliminate 𝑒2:

𝑒1 = 𝑎(𝑒1 + 𝜀 + (𝑏 + 𝜀)𝑒1) + 𝑏𝑒1
= (𝑎 + 𝑎𝑏 + 𝑏)𝑒1 + 𝑎

Using Arden’s lemma we get the unique solution

𝑒0 = 𝑒1 = (𝑎 + 𝑎𝑏 + 𝑏)∗𝑎 = (𝑎 + 𝑏)∗𝑎,

where the last step follows because 𝑎𝑏 is a member of the language
generated by (𝑎 + 𝑏)∗. Thus the regular expression 𝑒 = (𝑎 + 𝑏)∗𝑎
satisfies 𝐿(𝑒) = 𝐿(𝐴).

(b) It is easy to construct a DFA for the language generated by (𝑎+𝑏)∗𝑎:

𝑎 𝑏
→ 𝑠0 𝑠1 𝑠0

∗𝑠1 𝑠1 𝑠0

We can prove that this DFA is correct by converting it to a regu-
lar expression. It corresponds to the following system of equations,
where 𝑒0 corresponds to the start state 𝑠0:

𝑒0 = 𝑎𝑒1 + 𝑏𝑒0
𝑒1 = 𝜀 + 𝑎𝑒1 + 𝑏𝑒0

Let us solve for 𝑒0. We can start by eliminating 𝑒1 using Arden’s
lemma:

𝑒1 = 𝑎∗(𝜀 + 𝑏𝑒0)
𝑒0 = 𝑎(𝑎∗(𝜀 + 𝑏𝑒0)) + 𝑏𝑒0

= 𝑎+(𝜀 + 𝑏𝑒0) + 𝑏𝑒0
= 𝑎+ + (𝑎+ + 𝜀)𝑏𝑒0
= 𝑎+ + 𝑎∗𝑏𝑒0

Using Arden’s lemma again we get the (unique) solution

𝑒0 = (𝑎∗𝑏)∗𝑎+

= (𝑎∗𝑏)∗𝑎∗𝑎
= (𝑎 + 𝑏)∗𝑎,

2



where the final step uses the denesting rule.
Let us now minimise this DFA. First note that all of its states are ac-
cessible. Furthermore each state is distinguishable from every other:
there are only two states, and only one of them is accepting. Thus
the DFA is already minimal.

(c) The language 𝐿(𝐴) is equal to 𝐿((𝑎 + 𝑏)∗𝑎). Thus 𝐿(𝐴) consists of
arbitrary (finite) strings of 𝑎’s and/or 𝑏’s, with the restriction that
the strings have to end with an 𝑎.

4. No, they do not. We have

𝑒1 =
((𝜀 + 𝑏)𝑎)∗(𝑎𝑏(𝑎 + 𝑏𝑎)∗)∗ =
(𝑎 + 𝑏𝑎)∗(𝑎𝑏(𝑎 + 𝑏𝑎)∗)∗ = {by the denesting rule}
(𝑎 + 𝑏𝑎 + 𝑎𝑏)∗,

and

𝑒2 =
(𝑎 + 𝑏𝑎 + 𝑎𝑏)∗(𝑏(𝑎 + 𝑏𝑎 + 𝑎𝑏)∗)∗ = {by the denesting rule}
(𝑎 + 𝑏 + 𝑏𝑎 + 𝑎𝑏)∗.

Note that 𝑏 ∈ 𝐿(𝑒2) ∖ 𝐿(𝑒1).
5. (a) The grammar is 𝐺 = ({ 𝑋, 𝑌 } , { 𝑎, 𝑏 } , 𝑃 , 𝑋), where the set of pro-

ductions 𝑃 contains exactly 𝑋 → 𝑎 | 𝑎𝑌 and 𝑌 → 𝑋𝑏. See parts (b)
and (c) for a proof showing that 𝐿(𝐺) = 𝑋.

(b) The property 𝑋 ⊆ 𝐿(𝐺) follows from ∀𝑤 ∈ 𝑋. 𝑤 ∈ 𝐿(𝐺, 𝑋). Let
us prove the latter statement, mutually with ∀𝑤 ∈ 𝑌 . 𝑤 ∈ 𝐿(𝐺, 𝑌 ),
by induction on the structure of 𝑋 and 𝑌 . We have three cases to
consider:

• A case corresponding to 𝑎 ∈ 𝑋 . In this case we should prove
that 𝑎 ∈ 𝐿(𝐺, 𝑋). We can construct the following derivation:

𝑋 → 𝑎 ∈ 𝑃
𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑎 ∈ 𝐿L(𝐺, 𝑎)

𝑎 ∈ 𝐿(𝐺, 𝑋)

(Antecedents of the form “𝑎 is a terminal” or “𝐴 is a nonterminal”
are omitted from this and subsequent derivations.)

• A case corresponding to
𝑤 ∈ 𝑌

𝑎𝑤 ∈ 𝑋 . In this case we should prove
that 𝑎𝑤 ∈ 𝐿(𝐺, 𝑋), given the inductive hypothesis that 𝑤 ∈
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𝐿(𝐺, 𝑌 ). We can construct the following derivation:

𝑋 → 𝑎𝑌 ∈ 𝑃

𝑤 ∈ 𝐿(𝐺, 𝑌 ) 𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑤 ∈ 𝐿L(𝐺, 𝑌 )

𝑎𝑤 ∈ 𝐿L(𝐺, 𝑎𝑌 )
𝑎𝑤 ∈ 𝐿(𝐺, 𝑋)

• A case corresponding to
𝑤 ∈ 𝑋
𝑤𝑏 ∈ 𝑌 . In this case we should prove

that 𝑤𝑏 ∈ 𝐿(𝐺, 𝑌 ), given the inductive hypothesis that 𝑤 ∈
𝐿(𝐺, 𝑋). We can construct the following derivation:

𝑌 → 𝑋𝑏 ∈ 𝑃
𝑤 ∈ 𝐿(𝐺, 𝑋)

𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑏 ∈ 𝐿L(𝐺, 𝑏)

𝑤𝑏 ∈ 𝐿L(𝐺, 𝑋𝑏)
𝑤𝑏 ∈ 𝐿(𝐺, 𝑌 )

(c) The property 𝐿(𝐺) ⊆ 𝑋 follows from

∀𝑤 ∈ 𝐿(𝐺, 𝑋). 𝑤 ∈ 𝑋. (1)

Let us prove this, mutually with

∀𝑤 ∈ 𝐿(𝐺, 𝑌 ). 𝑤 ∈ 𝑌 , (2)

by complete induction on the lengths of the strings. We can begin
by proving the first statement (1). The derivation of 𝑤 ∈ 𝐿(𝐺, 𝑋)
must end in the following way:

𝑋 → 𝛼 ∈ 𝑃 𝑤 ∈ 𝐿L(𝐺, 𝛼)
𝑤 ∈ 𝐿(𝐺, 𝑋)

There are two possibilities for 𝛼:
• 𝛼 = 𝑎: In this case the derivation must end in the following way,

and 𝑤 must be equal to 𝑎:

𝑋 → 𝑎 ∈ 𝑃
𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑎 ∈ 𝐿L(𝐺, 𝑎)

𝑎 ∈ 𝐿(𝐺, 𝑋)

We can easily construct a derivation showing that 𝑤 = 𝑎 ∈ 𝑋:

𝑎 ∈ 𝑋
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• 𝛼 = 𝑎𝑌 : In this case the derivation must end in the following
way, and 𝑤 must be equal to 𝑎𝑢 for some 𝑢 ∈ 𝐿(𝐺, 𝑌 ):

𝑋 → 𝑎𝑌 ∈ 𝑃

𝑢 ∈ 𝐿(𝐺, 𝑌 ) 𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑢 ∈ 𝐿L(𝐺, 𝑌 )

𝑎𝑢 ∈ 𝐿L(𝐺, 𝑎𝑌 )
𝑎𝑢 ∈ 𝐿(𝐺, 𝑋)

Note that |𝑢| < |𝑤|. One of the inductive hypotheses thus implies
that 𝑢 ∈ 𝑌 . We can now construct a derivation showing that
𝑤 = 𝑎𝑢 ∈ 𝑋:

𝑢 ∈ 𝑌
𝑎𝑢 ∈ 𝑋

Let us now prove the second statement (2). The derivation of 𝑤 ∈
𝐿(𝐺, 𝑌 ) must end in the following way, and 𝑤 must be equal to 𝑢𝑏
for some 𝑢 ∈ 𝐿(𝐺, 𝑋):

𝑌 → 𝑋𝑏 ∈ 𝑃
𝑢 ∈ 𝐿(𝐺, 𝑋)

𝜀 ∈ 𝐿L(𝐺, 𝜀)
𝑏 ∈ 𝐿L(𝐺, 𝑏)

𝑢𝑏 ∈ 𝐿L(𝐺, 𝑋𝑏)
𝑢𝑏 ∈ 𝐿(𝐺, 𝑌 )

Note that |𝑢| < |𝑤|. One of the inductive hypotheses thus implies
that 𝑢 ∈ 𝑋. We can conclude by constructing a derivation showing
that 𝑤 = 𝑢𝑏 ∈ 𝑌 :

𝑢 ∈ 𝑋
𝑢𝑏 ∈ 𝑌

6. (a) Let us denote the language by 𝐿. It is equal to 𝑀 𝑁 , where the
complements are taken with respect to the language { 𝑎, 𝑏 }∗,

𝑀 = { 𝑢 ∈ { 𝑎, 𝑏 }∗ ∣ |𝑢| < 3 } , and
𝑁 = { 𝑣 ∈ { 𝑎, 𝑏 }∗ ∣ ∃𝑣1, 𝑣2 ∈ { 𝑎, 𝑏 }∗ . 𝑣 = 𝑣1𝑎𝑏𝑣2 }

= { 𝑣1𝑎𝑏𝑣2 ∣ 𝑣1, 𝑣2 ∈ { 𝑎, 𝑏 }∗ }
= { 𝑎, 𝑏 }∗ { 𝑎𝑏 } { 𝑎, 𝑏 }∗ .

The language 𝑀 is regular because it is finite (and a finite language
{ 𝑤1, …, 𝑤𝑛 }, where 𝑛 ∈ ℕ, is regular because it is generated by the
regular expression 𝑤1 +⋯+𝑤𝑛). 𝑁 is regular because it is generated
by the regular expression (𝑎+𝑏)∗𝑎𝑏(𝑎+𝑏)∗. Finally the set of regular
languages is closed under complementation (with respect to { 𝑎, 𝑏 }∗)
and concatenation, so 𝐿 = 𝑀 𝑁 is regular. Every regular language
is context-free, so 𝐿 is also context-free.
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(b) Let us denote the language by 𝐿. Consider the following function:

ℎ ∈ { 𝑎, 𝑏, 𝑐 } → { 𝑎, 𝑏 }∗

ℎ(𝑎) = 𝑎
ℎ(𝑏) = 𝑏
ℎ(𝑐) = 𝜀

The set of context-free languages is closed under string homomor-
phisms, so if 𝐿 were context-free, then ℎ(𝐿) would also be context-
free. However,

ℎ(𝐿) = ℎ({ 𝑤𝑐𝑤 ∣ 𝑤 ∈ { 𝑎, 𝑏, 𝑐 }∗ , ∃𝑢, 𝑣 ∈ { 𝑎, 𝑏 }∗ . 𝑤 = 𝑢𝑐𝑣 })
= { ℎ(𝑤𝑐𝑤) ∣ 𝑤 ∈ { 𝑎, 𝑏, 𝑐 }∗ , ∃𝑢, 𝑣 ∈ { 𝑎, 𝑏 }∗ . 𝑤 = 𝑢𝑐𝑣 }
= { ℎ(𝑤)ℎ(𝑤) ∣ 𝑤 ∈ { 𝑎, 𝑏, 𝑐 }∗ , ∃𝑢, 𝑣 ∈ { 𝑎, 𝑏 }∗ . 𝑤 = 𝑢𝑐𝑣 }
= { 𝑤𝑤 ∣ 𝑤 ∈ { 𝑎, 𝑏 }∗ } ,

which is not context-free. Thus 𝐿 is not context-free. Because regular
languages are context-free 𝐿 is also not regular.
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