
Sample solutions for the examination of
Finite automata theory and formal languages

(DIT321/TMV027)
from 2019-08-21

Nils Anders Danielsson

1. (a) None.
(b) 𝑆 and 𝐴.
(c) 𝐿(𝐺) = { 𝑎 }.

2. The Turing machine is (𝑄, { 0 } , Γ, 𝛿, even, ␣, { accept }), where 𝑄, Γ and
𝛿 are defined in the following way:

𝑄 = { even, odd, accept }
Γ = { 0, ␣ }

𝛿 ∈ 𝑄 × Γ ⇀ 𝑄 × Γ × { L, R }
𝛿(even, ␣) = (accept, ␣, R)
𝛿(even, 0) = (odd, 0, R)
𝛿(odd, 0) = (even, 0, R)

The machine always moves to the right. If it reads an even number of
zeros and then a blank, then it accepts. If it reads an odd number of zeros
and then a blank, then it rejects. The input alphabet is { 0 }, so these two
cases are exhaustive.

3. (a) The 𝜀-NFA 𝐴 corresponds to the following system of equations be-
tween languages, where 𝑒0 corresponds to the start state 𝑠0:

𝑒0 = 𝑎(𝑒0 + 𝑒2) + 𝑏𝑒1 + 𝑒1
𝑒1 = 𝑎𝑒2
𝑒2 = 𝜀 + 𝑏𝑒1

Let us solve for 𝑒0. We can start by eliminating 𝑒2:

𝑒0 = 𝑎(𝑒0 + 𝜀 + 𝑏𝑒1) + 𝑏𝑒1 + 𝑒1
= 𝑎 + 𝑎𝑒0 + (𝑎𝑏 + 𝑏 + 𝜀)𝑒1

𝑒1 = 𝑎(𝜀 + 𝑏𝑒1) = 𝑎 + 𝑎𝑏𝑒1

1

Using Arden’s lemma we get the unique solution 𝑒1 = (𝑎𝑏)∗𝑎. Let us
now eliminate 𝑒1:

𝑒0 = 𝑎 + 𝑎𝑒0 + (𝑎𝑏 + 𝑏 + 𝜀)(𝑎𝑏)∗𝑎
= (𝜀 + (𝑎𝑏 + 𝑏 + 𝜀)(𝑎𝑏)∗) 𝑎 + 𝑎𝑒0
= (𝑎𝑏 + 𝑏 + 𝜀)(𝑎𝑏)∗𝑎 + 𝑎𝑒0

(The last step follows because 𝜀 is a member of the language gener-
ated by (𝑎𝑏 + 𝑏 + 𝜀)(𝑎𝑏)∗.) Using Arden’s lemma we get the unique
solution

𝑒0 = 𝑎∗(𝑎𝑏 + 𝑏 + 𝜀)(𝑎𝑏)∗𝑎
= 𝑎∗(𝑏 + 𝜀)(𝑎𝑏)∗𝑎

(where the last step follows because the language generated by 𝑎∗𝑎𝑏
is contained in the language generated by 𝑎∗𝑏).
Thus the regular expression 𝑒 = 𝑎∗(𝑏+𝜀)(𝑎𝑏)∗𝑎 satisfies 𝐿(𝑒) = 𝐿(𝐴).

(b) If the 𝜀-NFA 𝐴 is converted to a DFA using the subset construction
(with inaccessible states omitted), then we obtain the following DFA
(possibly with different names for the states):

𝑎 𝑏
→ { 𝑠0, 𝑠1 } { 𝑠0, 𝑠1, 𝑠2 } { 𝑠1 }

∗ { 𝑠0, 𝑠1, 𝑠2 } { 𝑠0, 𝑠1, 𝑠2 } { 𝑠1 }
{ 𝑠1 } { 𝑠2 } ∅

∗ { 𝑠2 } ∅ { 𝑠1 }
∅ ∅ ∅

Let us now minimise this DFA. Note first that all of its states are
accessible. If the algorithm from the course is used to find equivalent
states, then we see that every state of this DFA is distinguishable
from every other state. Thus the DFA is already minimal.

(c) The language 𝐿(𝐴) is equal to 𝐿(𝑎∗(𝑏 + 𝜀)(𝑎𝑏)∗𝑎). Thus the strings
generated by 𝐴 consist of zero or more 𝑎’s, followed by zero or one
𝑏’s, followed by zero or more occurrences of 𝑎𝑏, and finally one 𝑎.

4. The two languages are equal.

• One proof: Let us first convert the DFA to a regular expression.
The DFA corresponds to the following system of equations between
languages, where 𝑒𝑎 corresponds to the start state:

𝑒𝑎 = 0𝑒𝑏 + (1 + 2)𝑒𝑑
𝑒𝑏 = 𝜀 + 0𝑒𝑐 + (1 + 2)𝑒𝑑
𝑒𝑐 = 0𝑒𝑏 + (1 + 2)𝑒𝑐
𝑒𝑑 = (0 + 1 + 2)𝑒𝑑

2

Using Arden’s lemma we get the following (unique) solutions:

𝑒𝑑 = (0 + 1 + 2)∗∅ = ∅
𝑒𝑐 = (1 + 2)∗0𝑒𝑏
𝑒𝑏 = (0(1 + 2)∗0)∗(𝜀 + (1 + 2)∅) = (0(1 + 2)∗0)∗

𝑒𝑎 = 0(0(1 + 2)∗0)∗ + (1 + 2)∅ = 0(0(1 + 2)∗0)∗

Let us now prove that 𝑒𝑎 is equal to the language generated by 𝑒:

0(0(1 + 2)∗0)∗ = {The shifting rule}
(00(1 + 2)∗)∗0 = {𝐸∗ = 𝜀 + 𝐸𝐸∗}
(𝜀 + 00(1 + 2)∗(00(1 + 2)∗)∗)0 = {The denesting rule}
(𝜀 + 00(1 + 2 + 00)∗)0 =
0 + 00(1 + 2 + 00)∗0 =
0 + 00(00 + 1 + 2)∗0

• An alternative proof (longer, but perhaps easier to come up with):
Let us start by converting the regular expression 𝑒 to an 𝜀-NFA 𝐵.
Instead of using the algorithm from the course text book (which
can yield rather large automata) I give 𝐵 directly and prove that
𝐿(𝐵) = 𝐿(𝑒). Here is 𝐵 (its alphabet is { 0, 1, 2 }):

0

1

2 3

4

0

0 0 1, 2

000

This 𝜀-NFA (without 𝜀-transitions) corresponds to the following sys-
tem of equations between languages, where 𝑒0 corresponds to the
start state:

𝑒0 = 0𝑒1 + 0𝑒2
𝑒1 = 𝜀
𝑒2 = 0𝑒3
𝑒3 = 0𝑒1 + (1 + 2)𝑒3 + 0𝑒4
𝑒4 = 0𝑒3

Using Arden’s lemma we get the following (unique) solutions: 𝑒1 = 𝜀,
𝑒3 = (00+1+2)∗0, 𝑒2 = 0(00+1+2)∗0, and 𝑒0 = 0+00(00+1+2)∗0.
Because 𝑒0 = 𝑒 we have 𝐿(𝐵) = 𝐿(𝑒).
If the 𝜀-NFA 𝐵 is converted to a DFA using the subset construction
(with inaccessible states omitted), then we obtain the following DFA
(possibly with different names for the states):

3

{ 0 } { 1, 2 } { 3 }

{ 1, 4 }∅

0

1, 2

0

1, 2

1, 2

00

1, 20, 1, 2

Let us denote this DFA by 𝐶. The algorithm from the course tells us
that 𝐿(𝐶) = 𝐿(𝐴), because the start states 𝑎 and { 0 } are equivalent
(✓ stands for “distinguishable”):

𝑎 𝑏 𝑐 𝑑
{ 0 } ✓ ✓ ✓
{ 1, 2 } ✓ ✓ ✓
{ 3 } ✓ ✓ ✓
{ 1, 4 } ✓ ✓ ✓
∅ ✓ ✓ ✓

Thus we get 𝐿(𝑒) = 𝐿(𝐵) = 𝐿(𝐶) = 𝐿(𝐴).

5. (a) The grammar is 𝐺 = ({ 𝑆 } , { 0, 1 } , 𝑃 , 𝑆), where the set of produc-
tions 𝑃 is defined by 𝑆 → 𝜀 | 01𝑆11. See parts (b) and (c) for a proof
showing that 𝐿(𝐺) = 𝑋.

(b) The property 𝑋 ⊆ 𝐿(𝐺) follows from ∀𝑤 ∈ 𝑋. 𝑤 ∈ 𝐿(𝐺, 𝑆). Let
us prove the latter statement by induction on the structure of the
string, seen as a member of 𝑋. We have two cases to consider:

• The string 𝑤 is 𝜀. In this case we can construct the following
derivation showing that 𝑤 ∈ 𝐿(𝐺, 𝑆):

𝑆 → 𝜀 ∈ 𝑃 𝜀 ∈ 𝐿∗(𝐺, 𝜀)
𝜀 ∈ 𝐿(𝐺, 𝑆)

• The string 𝑤 is 01𝑢11 for some 𝑢 ∈ 𝑋. The inductive hypoth-
esis for 𝑢 tells us that 𝑢 ∈ 𝐿(𝐺, 𝑆). Thus we can construct a
derivation of 𝑤 ∈ 𝐿(𝐺, 𝑆) in the following way:

𝑆 → 01𝑆11 ∈ 𝑃

𝑢 ∈ 𝐿(𝐺, 𝑆)

𝜀 ∈ 𝐿∗(𝐺, 𝜀)
1 ∈ 𝐿∗(𝐺, 1)

11 ∈ 𝐿∗(𝐺, 11)
𝑢11 ∈ 𝐿∗(𝐺, 𝑆11)

1𝑢11 ∈ 𝐿∗(𝐺, 1𝑆11)
01𝑢11 ∈ 𝐿∗(𝐺, 01𝑆11)

01𝑢11 ∈ 𝐿(𝐺, 𝑆)

4

(Antecedents of the form “𝑎 is a terminal” or “𝐴 is a nonterminal”
are omitted from this and subsequent derivations.)

(c) The property 𝐿(𝐺) ⊆ 𝑋 follows from ∀𝑤 ∈ 𝐿(𝐺, 𝑆). 𝑤 ∈ 𝑋. Let
us prove this by complete induction on the length of the string. The
derivation of 𝑤 ∈ 𝐿(𝐺, 𝑆) must end in the following way:

𝑆 → 𝛼 ∈ 𝑃 𝑤 ∈ 𝐿∗(𝐺, 𝛼)
𝑤 ∈ 𝐿(𝐺, 𝑆)

There are two possibilities for 𝛼:
• 𝛼 = 𝜀: In this case the derivation must end in the following way,

and 𝑤 must be equal to 𝜀:

𝑆 → 𝜀 ∈ 𝑃 𝜀 ∈ 𝐿∗(𝐺, 𝜀)
𝜀 ∈ 𝐿(𝐺, 𝑆)

We have 𝑤 = 𝜀 ∈ 𝑋.
• 𝛼 = 01𝑆11: In this case the derivation must end in the following

way, and 𝑤 must be equal to 01𝑢11 for some 𝑢 ∈ 𝐿(𝐺, 𝑆):

𝑆 → 01𝑆11 ∈ 𝑃

𝑢 ∈ 𝐿(𝐺, 𝑆)

𝜀 ∈ 𝐿∗(𝐺, 𝜀)
1 ∈ 𝐿∗(𝐺, 1)

11 ∈ 𝐿∗(𝐺, 11)
𝑢11 ∈ 𝐿∗(𝐺, 𝑆11)

1𝑢11 ∈ 𝐿∗(𝐺, 1𝑆11)
01𝑢11 ∈ 𝐿∗(𝐺, 01𝑆11)

01𝑢11 ∈ 𝐿(𝐺, 𝑆)

Note that |𝑢| < |𝑤|. The inductive hypothesis thus implies that
𝑢 ∈ 𝑋. We get that 𝑤 = 01𝑢11 ∈ 𝑋.

6. (a) Let us denote the language by 𝐿. It is equal to 𝑀 ∩ 𝑁 , where

𝑀 = { 𝑤𝑤R ∣ 𝑤 ∈ { 0, 1 }∗ } ,
𝑁 = { 𝑤 ∈ { 0, 1 }∗ ∣ |𝑤| < 14 } ,

and the complement is taken with respect to the language { 0, 1 }∗.
The language 𝑀 is context-free. 𝑁 is regular, because it is finite (and
a finite language { 𝑤1, …, 𝑤𝑛 }, where 𝑛 ∈ ℕ, is regular because it is
generated by the regular expression 𝑤1 + ⋯ + 𝑤𝑛). Furthermore 𝑁
is regular, because the set of regular languages is closed under com-
plementation. Thus we get that 𝐿 = 𝑀 ∩ 𝑁 is context-free, because
the intersection of a context-free language and a regular language is
context-free.

5

However, the language 𝐿 is not regular. If it were regular, then the
union of 𝐿 and the finite language 𝑀 ∩ 𝑁 would be regular, but

𝐿 ∪ (𝑀 ∩ 𝑁) = (𝑀 ∩ 𝑁) ∪ (𝑀 ∩ 𝑁) = 𝑀 ,

and 𝑀 is not regular.
(b) Let us denote the language by 𝐿. It is equal to 𝑀 ∩ 𝑁 , where

𝑀 = { 𝑤𝑤R ∣ 𝑤 ∈ { 0 }∗ }
= { 𝑤𝑤 ∣ 𝑤 ∈ { 0 }∗ }
= { 00 }∗ ,

𝑁 = { 𝑤 ∈ { 0 }∗ ∣ |𝑤| < 14 } ,

and the complement is taken with respect to the language { 0 }∗.
The language 𝑀 is regular because it is generated by the regular
expression (00)∗, and 𝑁 is regular because it is the complement of a
finite language. Thus we get that 𝐿 = 𝑀 ∩ 𝑁 is regular, because the
intersection of two regular languages is regular.
Every regular language is context-free, so the language is also context-
free.

6

