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SHORT SOLUTIONS to Home Exam June 3, 2020, 14.00-18.00

Course ode TMS016/MSA301

Literature and notes may be used in this written Home examination. All types of

poket alulators and omputers are allowed. You are not allowed to ommuniate

with any individual in any way. In the written examination there are two pages and

two problems. You are supposed to answer both problems, and in the judgement

they have the same weight. Answers may be given in English or Swedish.

Problem 1.

The left part of Figure 1 shows a histogram of non-zero wind power observations

measured at 336 stations in Denmark. The loations of the wind power

stations are shown in the right part of Figure 1 together with estimated

(predited) mean values of wind power omputed from the wind power station

measurements. From the olour bar we note that some estimated mean values

are negative, but would then be interpreted as zero.

Figure 1: Left: histogram of the non-zero wind power observations measured

at a spei� day and time interval 2009 at 336 stations. Right: estimated

mean wind power in Denmark (for the spei� daytime) together with the

wind power stations shown as blak dots.

a) Suggest a model and a method that ould be used to produe an estimated

mean map suh as shown in right part of Figure 1. Give details with suitable

formulas. NOTE: an aurate model of the data may be out of sope for the

present ourse, but a bold approximation ould be quite useful.

b) Show with suitable details how one ould produe a map similar to the

right part of Figure 1 but with estimated standard deviations instead of

estimated means.
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SOLUTION to Problem 1.

a) From Figure 1 left we see that the wind power distribution has a long

tail to the right. Typially we should then use a transformation suh as

a log transformation. Let Z(s) denote the wind power at loation s, put
Y (s) = log(Z(s) + a) with a parameter a and assume that

Y (s) =

K
∑

k=1

Bk(s)βk + ǫ(s) (1)

where B1(s), . . . , BK(s) are suitable ovariates at site s suh as height, distane
to the sea et etera, and ǫ(s) are N(0, σ2) noise variables, independent for

di�erent loations s.

Let s1, . . . , sN , N = 336, be the loations of the wind power stations. The

log-likelihood for our observations is

ℓ(a, β1, . . . , βK , σ) =
N
∑

i=1

log

{

1

σ
φ

(

Y (si)−
∑K

k=1Bk(si)βk

σ

)}

, (2)

where φ is the density of a standard normal variable. Maximization of the

log-likelihood (by a omputer method) gives maximum likelihood estimates

â, β̂1, . . . , β̂K , σ̂.

We note that

Z(s) = −a + eǫ(s) exp{
K
∑

k=1

Bk(s)βk}. (3)

A simple omputations shows that Eeǫ(s) = eσ
2/2

. Thus we �nd

µ(s) = E{Z(s)} = −a + eσ
2/2 exp{

K
∑

k=1

Bk(s)βk}, (4)

whih we estimate by

µ̂(s) = −â+ eσ̂
2/2 exp{

K
∑

k=1

Bk(s)β̂k}. (5)

Plotting µ̂(s) as a funtion of s should give a plot similar to Figure 1, right

part.

Further we note that the model (1) is an OLS model. We ould go on to

onsider GLS or ML models, as in Leture Notes Setions 5.4.2 and 5.4.3,

but that would be more ompliated.
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b) Let us now onsider estimation of the standard deviation (or equivalently

variane) instead of the mean. We note that

Var(Z(s)) = E(Z(s))2 − (µ(s))2 (6)

and (µ(s))2 we an estimate by (µ̂(s))2. It remains to estimate E(Z(s))2.
We note that Ee2ǫ(s) = e2σ

2

and �nd

E(Z(s))2 = E

(

−a + eǫ(s) exp{
K
∑

k=1

Bk(s)βk}
)2

= a2 − 2aE(eǫ(s)) exp{
K
∑

k=1

Bk(s)βk}+E(e2ǫ(s)) exp{2
K
∑

k=1

Bk(s)βk}

= a2 − 2aeσ
2/2 exp{

K
∑

k=1

Bk(s)βk}+ exp{2σ2 + 2
K
∑

k=1

Bk(s)βk}.

(7)

This seond order moment an be estimated by replaing parameters with

their estimates, and then we proeed as in the solution of a to produe the

wanted map.

Problem 2.

Figure 2 shows results from an experiment with 16×24 = 384 olonies of yeast

mutants grown under normal onditions (left) and in a nutrition solution with

arseni added (right). It is the same mutant grown in orresponding positions

on both plates, for instane in the top left spot in both images. The objet

is to analyze the e�et of arseni on the di�erent mutants.

Figure 2: Images of two plates showing size of yeast olonies grown under

normal onditions (left) and with arseni added (right).

a) Suggest a method for omputing the spot area of the 384 yeast olonies

in eah plate.
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b) There are atually 96 di�erent mutants studied in this experiment and

eah mutant is grown in a group of four positions in the following way: It is

the same mutant in

row 1, olumn 1; row 1, olumn 2; row 2, olumn 1; row 2, olumn 2

and similarly in

row 1, olumn 3; row 1, olumn 4; row 2, olumn 3; row 2, olumn 4

and so on.

Further, in eah group of four olonies for the same mutant the onentration

dereases in the order shown above. (Chek for yourself by looking at the

images that this seems reasonable.) How it dereases is not preisely known,

but it an be assumed that it is the same start amount (before growth) for

the olonies in orresponding positions in the two plates.

Suggest a suitable statistial model for estimating the e�et of arseni on the

growth of eah of the 96 mutants. Assume that the growth of eah olony is

desribed by the orresponding spot area.

How an you for eah of the 96 mutants test the hypothesis that arseni has

no e�et on the growth of olonies?

) How an you test the hypothesis that arseni generally has no e�et on

the growth of yeast olonies? Disuss how valid the test is.

SOLUTION to Problem 2.

a) Start by �nding two thresholds tL and tR for the left and right plates,

respetively. Compute and inspet for eah plate the histogram of grey

values. Find a suitable method to ompute threshold. Perhaps it will work

with taking the mean between two peaks, one peak for white and one for

blak pixels.

Assoiate with eah of the spots disjoint quadrati areas safely ontaining

the white pixels of the orresponding spot and denote by Smct the number of

white pixels (above the threshold) in the quadrati area for mutant m,m =
1, . . . ,M , with M = 96, onentration c, c = 1, . . . , 4, and treatment t, t =
1, 2, where t = 1 orresponds to the left plate and t = 2 orresponds to the

right plate.

b) Put

Ymc = log(Smc1/Smc2) (8)

and assume that Ymc, c = 1, . . . , 4, m = 1, . . . ,M , are independent and

N(µm, σ
2
m). Thus µm is a measure of the e�et of arseni on mutant m.

To test that arseni has no e�et on mutant m we will test the hypothesis

H0m : µm = 0. (9)
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A suitable test variable for this hypothesis is

tm =
Y m

sm/
√
4
, (10)

where Y m = (1/4)
∑4

c=1 Ymc and s2m = (1/3)
∑4

c=1(Ymc − Y m)
2
. We rejet

the hypothesis H0m on the 5% level if

|tm| > t.975,3, (11)

where t.975,3 is the 0.975 quantile of a t-distribution with 3 degrees of freedom.

(A one-sided test with rejetion if tm > t.95,3 ould also be motivated.)

)

To test that arseni has no e�et on any of the mutants we will test the

hypothesis

H0 : µm = 0, m = 1, . . . ,M (12)

Assume for simpliity that σ2
m = σ2

for all m. A suitable test variable is now

t =
Y

s/
√
4M

, (13)

where Y = (1/4M)
∑4

c=1

∑M
m=1 Ymc and s2 = (1/(3M))

∑M
m=1

∑4
c=1(Ymc −

Y m)
2
. We rejet the hypothesis H0 on the 5% level if

|t| > t.975,3M . (14)

One ould hek the validity of assumptions by plotting the histogram of all

4M residuals Ymc − Y m and see if it looks normal.
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