
Mats Rudemo, tel 0708 626472, email rudemo�
halmers.se

SHORT SOLUTIONS to Home Exam June 3, 2020, 14.00-18.00

Course 
ode TMS016/MSA301

Literature and notes may be used in this written Home examination. All types of

po
ket 
al
ulators and 
omputers are allowed. You are not allowed to 
ommuni
ate

with any individual in any way. In the written examination there are two pages and

two problems. You are supposed to answer both problems, and in the judgement

they have the same weight. Answers may be given in English or Swedish.

Problem 1.

The left part of Figure 1 shows a histogram of non-zero wind power observations

measured at 336 stations in Denmark. The lo
ations of the wind power

stations are shown in the right part of Figure 1 together with estimated

(predi
ted) mean values of wind power 
omputed from the wind power station

measurements. From the 
olour bar we note that some estimated mean values

are negative, but would then be interpreted as zero.

Figure 1: Left: histogram of the non-zero wind power observations measured

at a spe
i�
 day and time interval 2009 at 336 stations. Right: estimated

mean wind power in Denmark (for the spe
i�
 daytime) together with the

wind power stations shown as bla
k dots.

a) Suggest a model and a method that 
ould be used to produ
e an estimated

mean map su
h as shown in right part of Figure 1. Give details with suitable

formulas. NOTE: an a

urate model of the data may be out of s
ope for the

present 
ourse, but a bold approximation 
ould be quite useful.

b) Show with suitable details how one 
ould produ
e a map similar to the

right part of Figure 1 but with estimated standard deviations instead of

estimated means.
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SOLUTION to Problem 1.

a) From Figure 1 left we see that the wind power distribution has a long

tail to the right. Typi
ally we should then use a transformation su
h as

a log transformation. Let Z(s) denote the wind power at lo
ation s, put
Y (s) = log(Z(s) + a) with a parameter a and assume that

Y (s) =

K
∑

k=1

Bk(s)βk + ǫ(s) (1)

where B1(s), . . . , BK(s) are suitable 
ovariates at site s su
h as height, distan
e
to the sea et 
etera, and ǫ(s) are N(0, σ2) noise variables, independent for

di�erent lo
ations s.

Let s1, . . . , sN , N = 336, be the lo
ations of the wind power stations. The

log-likelihood for our observations is

ℓ(a, β1, . . . , βK , σ) =
N
∑

i=1

log

{

1

σ
φ

(

Y (si)−
∑K

k=1Bk(si)βk

σ

)}

, (2)

where φ is the density of a standard normal variable. Maximization of the

log-likelihood (by a 
omputer method) gives maximum likelihood estimates

â, β̂1, . . . , β̂K , σ̂.

We note that

Z(s) = −a + eǫ(s) exp{
K
∑

k=1

Bk(s)βk}. (3)

A simple 
omputations shows that Eeǫ(s) = eσ
2/2

. Thus we �nd

µ(s) = E{Z(s)} = −a + eσ
2/2 exp{

K
∑

k=1

Bk(s)βk}, (4)

whi
h we estimate by

µ̂(s) = −â+ eσ̂
2/2 exp{

K
∑

k=1

Bk(s)β̂k}. (5)

Plotting µ̂(s) as a fun
tion of s should give a plot similar to Figure 1, right

part.

Further we note that the model (1) is an OLS model. We 
ould go on to


onsider GLS or ML models, as in Le
ture Notes Se
tions 5.4.2 and 5.4.3,

but that would be more 
ompli
ated.
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b) Let us now 
onsider estimation of the standard deviation (or equivalently

varian
e) instead of the mean. We note that

Var(Z(s)) = E(Z(s))2 − (µ(s))2 (6)

and (µ(s))2 we 
an estimate by (µ̂(s))2. It remains to estimate E(Z(s))2.
We note that Ee2ǫ(s) = e2σ

2

and �nd

E(Z(s))2 = E

(

−a + eǫ(s) exp{
K
∑

k=1

Bk(s)βk}
)2

= a2 − 2aE(eǫ(s)) exp{
K
∑

k=1

Bk(s)βk}+E(e2ǫ(s)) exp{2
K
∑

k=1

Bk(s)βk}

= a2 − 2aeσ
2/2 exp{

K
∑

k=1

Bk(s)βk}+ exp{2σ2 + 2
K
∑

k=1

Bk(s)βk}.

(7)

This se
ond order moment 
an be estimated by repla
ing parameters with

their estimates, and then we pro
eed as in the solution of a to produ
e the

wanted map.

Problem 2.

Figure 2 shows results from an experiment with 16×24 = 384 
olonies of yeast

mutants grown under normal 
onditions (left) and in a nutrition solution with

arseni
 added (right). It is the same mutant grown in 
orresponding positions

on both plates, for instan
e in the top left spot in both images. The obje
t

is to analyze the e�e
t of arseni
 on the di�erent mutants.

Figure 2: Images of two plates showing size of yeast 
olonies grown under

normal 
onditions (left) and with arseni
 added (right).

a) Suggest a method for 
omputing the spot area of the 384 yeast 
olonies

in ea
h plate.
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b) There are a
tually 96 di�erent mutants studied in this experiment and

ea
h mutant is grown in a group of four positions in the following way: It is

the same mutant in

row 1, 
olumn 1; row 1, 
olumn 2; row 2, 
olumn 1; row 2, 
olumn 2

and similarly in

row 1, 
olumn 3; row 1, 
olumn 4; row 2, 
olumn 3; row 2, 
olumn 4

and so on.

Further, in ea
h group of four 
olonies for the same mutant the 
on
entration

de
reases in the order shown above. (Che
k for yourself by looking at the

images that this seems reasonable.) How it de
reases is not pre
isely known,

but it 
an be assumed that it is the same start amount (before growth) for

the 
olonies in 
orresponding positions in the two plates.

Suggest a suitable statisti
al model for estimating the e�e
t of arseni
 on the

growth of ea
h of the 96 mutants. Assume that the growth of ea
h 
olony is

des
ribed by the 
orresponding spot area.

How 
an you for ea
h of the 96 mutants test the hypothesis that arseni
 has

no e�e
t on the growth of 
olonies?


) How 
an you test the hypothesis that arseni
 generally has no e�e
t on

the growth of yeast 
olonies? Dis
uss how valid the test is.

SOLUTION to Problem 2.

a) Start by �nding two thresholds tL and tR for the left and right plates,

respe
tively. Compute and inspe
t for ea
h plate the histogram of grey

values. Find a suitable method to 
ompute threshold. Perhaps it will work

with taking the mean between two peaks, one peak for white and one for

bla
k pixels.

Asso
iate with ea
h of the spots disjoint quadrati
 areas safely 
ontaining

the white pixels of the 
orresponding spot and denote by Smct the number of

white pixels (above the threshold) in the quadrati
 area for mutant m,m =
1, . . . ,M , with M = 96, 
on
entration c, c = 1, . . . , 4, and treatment t, t =
1, 2, where t = 1 
orresponds to the left plate and t = 2 
orresponds to the

right plate.

b) Put

Ymc = log(Smc1/Smc2) (8)

and assume that Ymc, c = 1, . . . , 4, m = 1, . . . ,M , are independent and

N(µm, σ
2
m). Thus µm is a measure of the e�e
t of arseni
 on mutant m.

To test that arseni
 has no e�e
t on mutant m we will test the hypothesis

H0m : µm = 0. (9)
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A suitable test variable for this hypothesis is

tm =
Y m

sm/
√
4
, (10)

where Y m = (1/4)
∑4

c=1 Ymc and s2m = (1/3)
∑4

c=1(Ymc − Y m)
2
. We reje
t

the hypothesis H0m on the 5% level if

|tm| > t.975,3, (11)

where t.975,3 is the 0.975 quantile of a t-distribution with 3 degrees of freedom.

(A one-sided test with reje
tion if tm > t.95,3 
ould also be motivated.)


)

To test that arseni
 has no e�e
t on any of the mutants we will test the

hypothesis

H0 : µm = 0, m = 1, . . . ,M (12)

Assume for simpli
ity that σ2
m = σ2

for all m. A suitable test variable is now

t =
Y

s/
√
4M

, (13)

where Y = (1/4M)
∑4

c=1

∑M
m=1 Ymc and s2 = (1/(3M))

∑M
m=1

∑4
c=1(Ymc −

Y m)
2
. We reje
t the hypothesis H0 on the 5% level if

|t| > t.975,3M . (14)

One 
ould 
he
k the validity of assumptions by plotting the histogram of all

4M residuals Ymc − Y m and see if it looks normal.
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