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e) False. The backpropagation algorithm is used to compute the gradient of the loss function.
a) The function needs to be positive definite. This means that for any finite n > 1 and for
any choice of locations si,...,s,, the matrix ¥ with elements ¥;; = r(s;,s;) is positive

semidefinite: ¢’ Xc > 0 for any vector ¢ € R™.

(b) If the field is stationary, we have that 7(s +h,t +h) = r(s, t) for any vector h € R?. This
means that (s, t) only depends on the difference s — t. If the field also is isotropic, r(s,t)
only depends on the distance between the points, ||s — t||.

(c) We have to show that ry (s, t) is positive definite. Take n > 1, a set of locations sy, ..., sy,
and define the matrices ¥ and X., with elements X;; = r(s;,s;) and X.;; = ro(s;,s;)
respectively. We then have that 3. = 02T where I is the identity matrix. Take any vector
¢ € R”, we now have to show that ¢/ Zyc > 0, where ¥y = ¥ + .. We have:

c'Syec=c'Sc+c'2.c.
Since r is a covariance matrix, we have that ¢ 3¢ > 0. Further
n
cI'S.c=clo’lc = oiclc = o2 Z c
i=1
Thus, ¢! Syc is a sum of two non-negative terms and thus non-negative.
3. (a) In logistic regression we assume that the probabilities for the classes are

exp(Bo,x+B1y) .
-1 itk < K.
Plz=kly) = { X exlp(ﬂo,m{y)

K—
1435 exp(Bo,c+BTy)

if k= K,

where {5k, B k}le are parameters of the model. To estimate these parameters, we nu-
merically maximise the conditional log-likelihood }°7 ;log P(z = z|y;). This can, for
example, be done using gradient-descent optimization.

(b) The logistic regression model and the LDA model have the same forms for the probabilities
P(z = k|y). The difference is in how we estimate the models from data. For LDA we
maximize the regular log-likelihood >~%' ; log 7(y;) to find the parameters instead of the
conditional likelihood. One therefore uses the fact that the LDA model assumes that the
data from a specific class is Gaussian. This improves the efficiency of the estimation if the
Gaussianity assumption is satisfied. If, however, the data does not seem to be Gaussian
for a given class, it is safer to use logistic regression.

4. (a) We obtain a filtered image by computing the convolution between the image pixel value
x;; and a filter kernel w. We could for example use a simple averaging filter with values



w;ij =1/9if —1 <4,5 <1 and w;; = 0 otherwise. The filtered image is then obtained as

11
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Thus the value of Z; ; is the average over the 9 pixels values in x closest to (3, j).

(b) Let X(; ;) denote the value of the image a pixel (i,j). We then have that X(; ;| X_(; j) ~
N(p;, 0%), where

1
pi = B(XG|X ;) = p— g(X(i—H,j) + X(ig1,5) + Xijr1) + X j—1) — 4p)

O'2 = V(XZ‘X,Z) =

o] =

(c) We assume that the observed values in the pixels, Y(;,j) are noisy observations of the
corresponding pixels in the true image, X(; j), which we model using the GMRF. Thus,
Yii) = X(ij) + €(i,j), where €(; ;y are iid N(0, 02) variables.

(d) We have that the distribution of X conditionally on the observed values Y is

N(/L]. + Qil(Y - M1)7 Qil)a

where Q = Q + 0, %I. We use the mean value of this distribution as predictor:

X = E(X[Y) = pl+Q (Y — ul).



