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Question 1

(the simplex method)

a) Rewrite the problem into standard form by adding/subtracting slack vari-(2p)
ables s1 and s2 to the left-hand side in the first and second constraint,
respectively. Moreover, let z := −z to get the problem on minimization
form. Thus, we get the following linear program:

minimize z = −x1 − 2x2,

subject to −x1 − x2 + s1 = 1,

x1 − x2 − s2 = 1,

x1, x2, s1, s2 ≥ 0.

Introducing the artificial variable a, phase I gives the problem

minimize w = a,

subject to −x1 − x2 + s1 = 1,

x1 − x2 − s2 + a = 1,

x1, x2, s1, s2, a ≥ 0.

Using the starting basis (s1, a)
T gives

B =

(

1 0
0 1

)

,N =

(

−1 −1 0
1 −1 −1

)

,xB =

(

1
1

)

, cB =

(

0
1

)

, cN =





0
0
0



 .

The reduced costs, c̄TN = c
T
N −c

T
BB

−1
N , for this basis is c̄TN =

(

−1 1 1
)

,

which means that x1 enters the basis. The minimum ratio test implies that
a leaves.

Thus, we move on to phase II using the basis (s1, x1)
T , and

B =

(

1 −1
0 1

)

,N =

(

−1 0
−1 −1

)

,xB =

(

2
1

)

, cB =

(

0
−1

)

, cN =

(

−2
0

)

.

The new reduced costs are c̄
T
N =

(

−3 −1
)

which means that x2 enters the basis. From the minimum ratio test we get

B
−1
N 1 =

(

−2 −1
)T

< 0, meaning that the problem is unbounded.



EXAM SOLUTION
TMA947/MMG621 — NONLINEAR OPTIMISATION 2

b) A direction of unboundedness is l(µ) =
(

1 0 2 0
)T

+ µ
(

1 1 2 0
)T

,(1p)
µ ≥ 0.

Question 2(3p)

(gradient projection)

The gradient of f at the point x0 = (0, 2)T is ∇f(x0) = (2, 8)T . Taking a
step in the negative gradient direction with α = 1/8 gives the new point x0 −
(1/8)(2, 8)T = (−1/4, 1).

Projecting this point to the feasible set yields the new iterate x1 = (0, 1).

This point is clearly neither a local nor a global minimum. To check this, perform
another iteration and see that the new iterate is not the same as x1.

Question 3(3p)

(optimality conditions for special feasible sets)

Thanks to the linearity of the constraints, the problem satisfies the Abadie con-
straint qualification and the Karush–Kuhn–Tucker conditions are necessary for
the local optimality of x. Introducing the multiplier µ for the equality con-
straint and λj for the sign constraints on xj we obtain the Lagrangian function
L(x, µ,λ) := bµ+

∑n

j=1
(fj(xj) + [µ− λj]xj). Assume that (x∗, µ∗,λ∗) is a KKT

point. Setting the partial derivatives of L to zero yields

φ′

j(x
∗

j ) = λ∗

j − µ∗, j = 1, . . . , n, (1)

and further, from complementarity, that

λ∗

jx
∗

j = 0, j = 1, . . . , n.

For a j with x∗

j > 0 it must then hold that φ′

j(x
∗

j ) = −µ∗. Suppose instead that
x∗

j = 0. Then since λ∗

j ≥ 0 must hold, we find, from the characterization (1), that
φ′

j(x
∗

j ) = λ∗

j − µ∗ ≥ −µ∗, and we are done.
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Question 4

(Karush–Kuhn–Tucker)

a) Let g1(x) := −x2
1−x2

2+25, g2(x) := x1− 4 , g3(x) := x2− 4, g4(x) := −x1(2p)
and g5(x) := −x2with respective gradients ∇g1 = (−2x1,−2x2)

T , ∇g2 =
(1, 0)T ,∇g3 = (0, 1)T , ∇g4 = (−1, 0)T and ∇g5 = (0,−1)T .
Moreover, ∇f = (−2x1 + 2, 0)T . The KKT-conditions are as follows:

∇f(x∗) +
∑

5

i=1
µi∇gi(x

∗) = 0,

µigi(x
∗) = 0, i = 1, ..., 5,

µi ≥ 0, i = 1, ..., 5.

Since the objective function f is not convex, the KKT conditions are not
sufficient.

To prove KKT conditions are necessary, we use LICQ. For the interior
points, there is no active constraints, and for the points on the boundary
but not extreme points, there is only one active constraint, so the gradient
of the active constraint must be linearly independent. So we only need
to check three extreme points: (4, 3)T , (3, 4)T , (4, 4)T . For point (4, 3)T ,
the gradient of the active constraints are (−8,−6)T and (1, 0)T , obviously
they are linearly independent. For point (3, 4)T , the gradient of the active
constraints are (−6,−8)T and (1, 0)T , obviously they are linearly indepen-
dent. For point (4, 4)T , the gradient of the active constraints are (0, 1)T and
(1, 0)T , obviously they are linearly independent. So LICQ holds at every
feasible point. Thus, the KKT-conditions are necessary.

b) By letting different combinations of constraints be active, we can see when(1p)
only g2 active, we get (4, a), 3 < a < 4 are KKT points. When g1 and
g2 are active, we get (4, 3) is a KKT point. When g2 and g3 are active,
we get (4, 4) is a KKT point. So (4, a), 3 ≤ a ≤ 4 are KKT points. Since
KKT conditions are necessary, so the optimal solution must be KKT points.
Since all KKT points give the same objective function value −8, so all the
KKT points are optimal.
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Question 5(3p)

(modelling)

Let S1, S2, . . . , Sm be the sets, and let U = {1, . . . n} be the universe to cover.
Now let the binary parameters sij = 1 if the element j is in the set Si for
i ∈ {1, . . . , m} and j ∈ {1, . . . , n}, and sij = 0 otherwise. Let wi be the weight
of set Si.

Let xi be a binary variable where xi = 1 if set Si is included in the sub-collection,
where i ∈ {1, . . . , m}, and xi = 0 otherwise. The weighted set covering problem
can now be formulated as:

minimize

m
∑

i=1

wisi,

subject to
m
∑

i=1

sijxi ≥ 1, j ∈ {1, . . . , n},

xij ∈ {0, 1}

Question 6

(true or false)

a) False. Consider f(x) = x3 at x = 0; a negative direction from 0 clearly(1p)
reduces the value of f , while f ′(0) = 0.

b) True. The claim is a characterization of the line search being exact in the(1p)
direction of the vector xt+1 − x

t.

c) False. The solution set of the two linear inequalities aT
x ≥ b and a

T
x ≤ b,(1p)

defines, by definition, a polyhedron, as it is the solution set of a collection
of linear inequalities. On the other hand, the solution set also is a line
segment in R

n.
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Question 7(3p)

(Farkas’ lemma)

See the course book.


