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Question 1

(the simplex method)

a)

b)

Rewrite the problem into standard form by letting z; := 2 — 2] and
adding/subtracting slack variables s; and s, to the left-hand side in the
first and second constraint, respectively. Moreover, let z := —z to get the

problem on minimization form. Thus, we get the following linear program:

minimize 2= x] — x] + 29,
subject to —xf + i+ 1+ s =5,
) — SS9 = 27
rf, xy, ma, s, sy >0.

Introducing the artificial variable a, phase I gives the problem

minimize w= a,
subject to —zf +al+ 1 + 5 =5,
To — 89 + a =2,

Ty, xl_ y L2, 51, 52, a Z 0.

Using the starting basis (s, a)? gives

10 111 0 5 0
B:(O 1)’N:<o 0 1 —1>’mB:(2)’cB:<1>’CN: 8

The reduced costs, €y = ck—c5B~ "N, for this basisisel, = (0 0 —1 1),

e}

which means that x5 enters the basis. The minimum ratio test implies that
a leaves.

Thus, we move on to phase II using the basis (s1,22)7, and

1
11 11 0 3 0
oo ) = (0o B)men (0)eon () e

The new reduced costs are ¢y = (1 —1 2) which means that =] enters

the basis. The minimum ratio test implies that s; leaves.
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Updating the basis, now with (2], z9)7, gives

11 11 0 3 -1
o= (o) M= (00 D)= (5) oo (W) e

The new reduced costs are ¢k, = (0 1 3) which means that the current
basis is optimal. The optimal solution is thus

x* = (xir Ty T2 S 32)T = (O 3 20 O)T

with optimal objective function value z* = 1.

O =

Question 2

(Lagrangian duality and convexity)

a) We create the Lagrangian function

L(m, ) = (21—1)*=229+p(2z2—21—2) = (27 — 221 — pay) +2(p—1)za+1-24.

(1)

The dual function then is

q(p) = rzéliZ%L(x, p)=1-— 2u—|—£r11i21r(1) (23 — 221 — pay) +£r21121(1)2(u —1D)zy. (2)
At u = 0, since the objective function coefficient for x, is negative, letting
ro — 00 yields unbounded solutions to the Lagrangian subproblem. Thus
q(0) = —oo. At p = 2, to minimize the convex quadratic problem in x; we
let 1 = 14 pu/2 = 2, and x5 = 0. Thus ¢(2) = —7. By weak duality it
follows that ¢(2) < f*. To find an upper bound, choose any feasible point,
e.g. (x1,22) = (1,1), which has objective value —2. Hence f* € [-7,—2].

b) See course book.
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Question 3

(Karush-Kuhn-Tucker)

a)

b)

Let g1(x) := 21 + 22 — 5, go(x) := —xq and g3(x) := —x4, with respective
gradients (1,1)”, (—=1,0)" and (0, —1)7.
Moreover, Vf = (=2(z; — 3), —2(zo — 1))?. The KKT-conditions are as
follows:

—2(z1 = 3) + 1 — p2 = 0,

—2(zy = 1) + py — p3 = 0,

i, p2, pg 2> 0,
T1+x2 — 5 <0,
—x1 <0,

—x9 <0,

p1(xy + 29 —5) =0,
pz(—x1) = 0,
ps(—x2) = 0.

Since the functions g;, i = 1,2, 3, are convex and there exists an inner point
(for example (1,1)T), the problem satisfies Slater CQ. Thus, the KKT-
conditions are necessary.

By visually analyzing the figure, we can see that there is a total of 7 KKT-
points. To find all of them analytically, let different combinations of con-
straints be active and solve for x in the KKT-conditions.

For instance, let g; be the only active constraint. Then, x1 + x5 — 5 =0
and pe = p3 = 0. This, together with the first two KKT-conditions, gives
that 21 = % and 25 = 2. Thus, we get the KKT-point &' = (,3)7.
Similar calculations for other active constraints gives the KKT-points

z? = (3,007, ¥ = (0,17, =* = (5,0)T, ° = (0,5)7, 2% = (0,0)” and
" = (3,1)T. Note that =7 is found when there are no active constraints,
i.e. an inner point where V f(x) = 0.

Since the KKT-conditions are necessary, the global optimum must be in at
least one KKT-point. Trying all of them gives f* = —25 for
x* =x° = (0,5)T.
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Question 4
(unconstrained optimization)

We have that

V() = (201 + 200 + 4, 20 — 425)T, V2 f(z) = (; _24> (1)
a) For the steepest descent method:
p=-Vf(@)=(-4,0)" (2)
b) For Newtons method:
p=-[V*/(@)] V@) =(-4/3-2/3)" 3)

c) For Newtons method with Levenberg-Marquardt modification:
_ -1 _
p=—[Vf(@)+ 1] Vf(x)=(-4/9,2/9)" (4)

The methods a) and c¢) always finds descent directions (if «y is chosen large
enough).

(3p) Question 5
(modelling)

A suggested integer programming formulation is as follows:

Sets:

L :={ili € {1,...,7}}, the set of wind turbines,

M = {j|lj € {Mon, ..., Fri}}, the set of different days,
N = {k|k € {1,2}}, the set of two maintenance teams.

To simplify the problem, we add a parameter ¢;; @ € £, j € M, are the mainte-
nance cost for different wind turbines at each day.



EXAM SOLUTION
TMA947/MMG621 — NONLINEAR OPTIMISATION 5

The decision variables are:

S 1 if maintenance team k& € N maintain wind turbine 7 € £ at day j € M,
R0 otherwise.

Model:
minimize Z Z Z CjiTijks
iel jeMkeN
subject to Z Z Tijr = 1 1€ L,
JEM keN
mekgl kEN,jGM,
€L

zijr € {0,1} ie L,je MkeN.

Question 6

(true or false)

(1p) a) The claim is false. The functions h;, i = 1,...,k defining the equality
constraints must be affine.

(1p)  b) The claim is true.
Choose arbitrary two points, ! and x?, an a € [0, 1],

af(z') + (1 —a)f(z?)
= waneaﬂ;‘ +(1—a) lnze“ﬂ?
J=1 j=1

n n
— In E eajle-oa +1n 2 eajx?(l—a)
Jj=1 J=1
n n
— 1 ajria ajr?(l—a) : x v R
= In e®%; %] since e* > 0, Vx €
Jj=1 Jj=1
n
> In § :eajz;aeajx?(lfa)
j=1

_ IHZ ea]-(x;a—ﬁ-x?(l—a))
j=1

=f(az' + (1 — a)z?)
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By definition, f is a convex function.

¢) The claim is false. Consider the linear program to minimize xs subject to
the constraints 0 < z; < 4,7 = 1,2, and the additional constraint that
21+ 2 < 2. This problem has the optimal solution set X* = {z € R2]x1 S
0,2]; 29 = 0}. At the optimal solution z* = (1,0)*, z; + x5 < 2 holds.
Believing that this means that the constraint x; + x5 < 2 therefore is
redundant results, however, in a grave mistake, as the new problem has the
optimal set X} = {z € R?*z; € [0,4]; 25 = 0}.

new

Question 7
(LP duality)

See Theorem 10.6 in the course book.




