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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We rewrite x2 = x+
2 − x−

2(2p)
and introduce slack variables s1 and s2.

f ∗ = infimum − 2x1 + x+
2 − x−

2 ,

subject to − x1 + x+
2 − x−

2 + s1 = 0,

x1 − 2x+
2 + 2x−

2 + s2 = 4,

x1, x
+
2 , x−

2 , s1, s2 ≥ 0.

Phase I

If we start with basis (s1, s2), we have a unit matrix.

Phase II

Calculating the reduced costs, we obtain c̃N = (−2, 1,−1)T, meaning that
x1 should enter the basis. From the minimum ratio test, we get that the
only eligible outgoing variable is s2.

Updating the basis we now have (x1, s1) in the basis. At this BFS, we have
that c̃N = (−3, 3, 2)T, meaning that x+

2 should enter the basis. Performing
the minimum ratio test, we see that B−1Nx+

2
= (−2,−1)T, which means

that the problem is unbounded. A direction of unboundedness in variables
in the standard form then is

p =

[

−B−1Nx+

2

ex+

2

]

=











px1

ps1

px+

2

px−

2

ps2











=











2
1
1
0
0











.

Translating this to the original variables, we see that a direction of un-

boundedness is p =

[

px1

px2

]

=

[

2
1

]

b) We have that f ∗ = −∞, since the problem is unbounded. By weak du-(1p)
ality, we have that the LP dual is infeasible. But the feasible set to the
dual problem does not depend on the right-hand side vector b, so the dual
problem will always be infeasible. The only thing that can affect f ∗ is if
the perturbation also makes the primal problem infeasible, meaning that
f ∗ = ∞. However, in this example, the problem will always be unbounded.
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Question 2

(Lagrangian duality)

a) We create the Lagrangian function(2p)

L(x, µ) = (x1−1)2−2x2+µ(2x2−x1−2) =
(

x2
1 − 2x1 − µx1

)

+(2(µ − 1)x2)+1−2µ.

The dual function then is

q(µ) = min
x≥0

L(x, µ) = 1 − 2µ + min
x1≥0

(

x2
1 − 2x1 − µx1

)

+ min
x2≥0

(2(µ − 1)x2) .

At µ = 0, since the objective function coefficent for x2 is negative, letting
x2 → ∞ yields unbounded solutions to the Lagrangian subproblem. Thus
q(0) = −∞.

At µ = 2, to minimize the convex quadratic problem in x1 we let x1 =
1 + µ/2 = 2, and x2 = 0. Thus q(2) = −7. By weak duality it follows that
q(2) ≤ f ∗.

To find an upper bound, choose any feasible point, e.g. (x1, x2) = (1, 1),
which has objective value −2. Hence f ∗ ∈ [−7,−2].

b) Take g1, g2 ∈ ∂f(x) and λ ∈ (0, 1). Then(1p)

f(x) +
(

λg1 + (1 − λ)g2
)T

(y − x) = f(x) + λ(g1)T(y − x) + (1 − λ)(g2)T(y − x)

= λ
[

f(x) + (g1)T(y − x)
]

︸ ︷︷ ︸

≤f(y)

+(1 − λ)
[

f(x) + (g2)T(y − x)
]

︸ ︷︷ ︸

≤f(y)

≤ λf(y) + (1 − λ)f(y) = f(y), y ∈ R
n.

So λg1 + (1 − λ)g2 ∈ ∂f(x), which implies that ∂f(x) is a convex set.

Question 3(3p)

(gradient projection)

The starting point is x0 = (0 2)T, where f(x0) = 8. At this point, ∇f(x0) =
(2 2)T, so the search direction is p0 = (−2 − 2)T. With the step length α = 1

4
,

we obtain the point x = (−1
2

3
2
)T; as it is infeasible, we need to project this

point onto the feasible set; this yield the new iteration point x1 = (0 3
2
)T. The
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objective value at x1 is 9/2, so in this instance the step length was short enough
to produce descent.

We are then asked to check whether x1 is a stationary point, or indeed an optimal
solution. As the gradient projection method is a descent method, we simply
generate the search direction from x1 to find out if descent is obtained or not.

At x1, we have that ∇f(x1) = (−3 6)T, so the next search direction hence is
p0 = (3 − 6)T. At x1 this is feasible descent direction. Hence, x1 cannot be
optimal.

Question 4

(KKT conditions)

a) Let f(x∗) = x1 + x2, g1(x) = −x1, g2(x) = −x2, g3(x) = x1x2. We(1p)
get that ∇g1(x

∗) = [−1, 0]T, ∇g2(x
∗) = [0,−1]T, ∇g3(x

∗) = [0, 0]T and
∇f(x∗) = [1, 1]T. Hence

∇f(x∗) + 1∇g1(x
∗) + 1∇g2(x

∗) = 0,

which shows that x∗ is a KKT point.

b) The only (locally) optimal solution is x∗ = (0, 0)T. The feasible set S(1p)
consists of the non-negative coordinates axes, and hence for any x ∈ S
it holds that for p = x − x∗ we have p1p2 = 0. Thus p1p2 = 0 for any
p ∈ TS(x∗). Since both [1, 0]T ∈ TS(x∗) and [0, 1] ∈ TS(x∗) but (1/2, 1/2) /∈
TS(x∗) it follows that TS(x∗) is not a convex set. On the other hand, G(x∗)
is a convex polyhedron. Hence TS(x∗) 6= G(x∗).

c) Let x∗ be locally optimal. Then the geometric optimality condition yields(1p)

that
◦

F (x∗) ∩ TS(x∗) = ∅. For any p ∈ convTS(x∗) we have p =
∑k

j=1 αjpj

for some pj ∈ TS(x∗), 0 ≤ αj, j = 1, . . . , k,
∑k

j=1 αj = 1. Then

∇f(x∗)Tp = ∇f(x∗)T
k∑

j=1

αjpj

=
k∑

j=1

αj
︸︷︷︸

≥0

∇f(x∗)Tpj
︸ ︷︷ ︸

≥0

≥ 0,
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since pj ∈ TS(x∗) =⇒ pj /∈
◦

F (x∗). Hence p /∈
◦

F (x∗), and thus
◦

F (x∗) ∩

convTS(x∗) = ∅. By the Guignard CQ, then
◦

F (x∗) ∩ G(x∗) = ∅. The rest
of the proof follows by Farkas’ Lemma as for the proof under Abadies CQ.

Finally we note that for the problem in (a), G(x∗) = {p | p1, p2 ≥ 0} =
{p | p = α[1, 0]T + β[0, 1]T, α, β ≥ 0}. But since [0, 1]T ∈ TS(x∗) and
[1, 0]T ∈ TS(x∗) it follows that G(x∗) ⊆ convTS(x

∗). But since convTS(x
∗) ⊆

G(x∗) always holds, we must have that G(x∗) = convTS(x
∗); the Guignard

CQ holds at x∗. At any other feasible x, it is easy to see that the Abadie
CQ holds, hence the Guignard CQ holds everywhere.

Question 5

(linear programming duality and optimality)

a) Let the Lagrange multipliers be denoted by µ ∈ R
m
+ and σ ∈ R

n
+, respec-(1p)

tively.

Setting the partial derivative of the Lagrangian L(x,µ,σ) := cTx+µT(b−
Ax)−σTx to zero yields that σ = c−ATµ must hold. (This can be used to
eliminate σ altogether.) Inserting this into the Lagrangian function yields
that the optimal value of the Lagrangian when minimized over x ∈ R

n is
bTµ. According to the construction of the Lagrangian dual problem, bTµ

should then be maximized over the constraints that the dual variables are
non-negative; here, we obtain that µ ≥ 0m, and from σ ≥ 0n we further
obtain that ATµ ≤ c must hold. The Lagrangian dual problem hence is
equivalent to the canonical LP dual:

maximize w = bTµ, (D)

subject to ATµ ≤ c,

µ ≥ 0n.

b) We identify X = R
n, ℓ = m + n, and the vector(2p)

g(x) =

(

b − Ax

−x

)

.

The optimality conditions of (1) include both multiplier vectors µ and σ,
but σ is eliminated here as well. Primal feasibility corresponds to the
requirements that Ax ≥ b and x ≥ 0n hold, while dual feasibility was above
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shown to be equivalent to the requirements that ATµ ≤ c and µ ≥ 0m hold.
Finally, complementarity yields that µT(b − Ax) = 0 hold, as well as the
condition that σTx = 0 holds; the latter reduces (thanks to the possibility
to eliminate σ) to xT(ATµ − c) = 0, the familiar one. We are done.

Question 6(3p)

(convergence of an exterior penalty method)

This is Theorem 13.3.

Question 7(3p)

Introduce the binary variables xij for i, j ∈ N , denoting the value placed in row
i column j in the solution to the puzzle. Further introduce the variables

yi1i2j =







1, rows i1 and i2 are identical in column j,

0, otherwise.

and

zj1j2i =







1, columns j1 and j2 are identical in row i,

0, otherwise.

for i1, i2, j1, j2 ∈ N , i1 < i2, j1 < j2. A puzzle solution is equivalent to a feasible
solution to the constraints

k+2∑

j=k

xij ≥ 1, i ∈ N , k = 1, . . . , n − 2, (1)

k+2∑

j=k

xij ≤ 2, i ∈ N , k = 1, . . . , n − 2, (2)

n∑

j=1

xij =
n

2
, i ∈ N , (3)

k+2∑

i=k

xij ≥ 1, j ∈ N , k = 1, . . . , n − 2, (4)



EXAM SOLUTION
TMA947/MMG621 — OPTIMIZATION, BASIC COURSE 6

k+2∑

i=k

xij ≤ 2, j ∈ N , k = 1, . . . , n − 2, (5)

n∑

i=1

xij =
n

2
, j ∈ N , (6)

yi1i2j ≥ xi1j + xi2j − 1, i1, i2, j ∈ N , i1 < i2, (7)
yi1i2j ≥ 1 − (xi1j + xi2j) , i1, i2, j ∈ N , i1 < i2, (8)
zj1j2i ≥ xij1 + xij2 − 1, j1, j2, j ∈ N , j1 < j2, (9)
zj1j2i ≥ 1 − (xij1 + xij2) , j1, j2, j ∈ N , j1 < j2, (10)

n∑

j=1

yi1i2j ≤ n − 1, i1, i2 ∈ N , i1 < i2, (11)

n∑

i=1

zj1j2i ≤ n − 1, j1, j2 ∈ N , j1 < j2, (12)

xij = aij, (i, j) ∈ D, (13)
xij, yi1i2j, zj1j2i ∈ {0, 1}, i, j ∈ N , j1, j2 ∈ N , j1 < j2. (14)

The first three constraints correspond, in order, to requiring that in a fixed row,
three consecutive numbers cannot all be 0, three consecutive numbers cannot not
all be 1, and half the numbers in the row must be 1. Constraints (4)–(6) state the
similar logic over individual columns. Constraints (7)–(8) enforce that yi1i2j = 1
if and only if xi1j = xi2j; the right hand side of (7) evaluates to 1 if xi1j = xi2j = 1,
and 0 otherwise, the right hand side of (8) evaluates to 1 if xi1j = xi2j = 0, and 0
otherwise. Constraints (9)–(10) state the similar logic as (7)–(8) over columns in-
stead of rows. Finally, constraints (11)–(12) state that two rows/columns cannot
be identical everywhere, while (13) ensures that we respect the inital puzzle data.

To verify uniqueness of solutions, first solve the model with an arbitrary (linear)
objective function. Denote (if it exists) the optimal puzzle solution by x̄ij, i, j ∈
N . Now consider the objective function to minimize f(x,y, z) =

∑

i,j∈N cijxij,
where cij = x̄ij. Resolve the model with this objective function. If the puzzle
solution is unique, the optimal value f ∗ = n2/2 (the number of ones in the puzzle
solution x̄ij). If the puzzle solution in not unique, there exists a solution that
places a 0 at some point where x̄ij = 1, and hence f ∗ < n2/2.


