
Algorithms Exam

TIN093/DIT093/DIT602

Course: Algorithms

Course code: TIN 093 (CTH), DIT 093 and DIT 602 (GU)

Date, time: 26th October 2022, 8:30–12:30

Place: Johanneberg

Responsible teacher: Peter Damaschke, Tel. 5405, email ptr@chalmers.se

Examiner: Birgit Grohe

Exam aids: dictionary,

printouts of the Lecture Notes (possibly with own annotations),

printouts of the Assignments (possibly with own annotations of solutions),

one additional A4 paper (both sides) with own handwritten notes.

Time for questions: around 9:30 and around 11:00.

Solutions: will be published after the exam.

Results: will appear in ladok.

Point limits: 28 for 3, 38 for 4, 48 for 5; PhD students: 38. Maximum: 60.

Inspection of grading (exam review): to be announced.

1



Instructions and Advice:

• First read through all problems, such that you know what is unclear

to you and what to ask the responsible teacher.

• Write solutions in English.

• Start every new problem on a new sheet of paper.

• Write your exam number on every sheet.

• Write legible. Unreadable solutions will not get points.

• Answer precisely and to the point, without digressions.

Unnecessary additional writing does not only cost time.

It may also obscure the actual solutions.

• But motivate all claims and answers.

• Strictly avoid code for describing a complex algorithm.

Instead explain in your words how the algorithm works.

• If you cannot manage a problem completely, still provide your

approach or partial solution to earn some points.

• Facts from the course material can be assumed to be known.

You don’t have to repeat their proofs.

Remark: The number of points is not always “proportional” to the length

or difficulty of a solution, but it may also be influenced by the importance

of the topics and skills.

Good luck!

2



Problem 1 (10 points)

Imagine that n heavy boxes are lined up. They have identity numbers from

1 to n, but somehow the ordering got confused, and we want to arrange the

boxes from left to right according to their identity numbers 1, . . . , n. But in

every step, only two neighbored boxes can be chosen and swapped (because

they are heavy, moreover, there is not enough extra space for temporal

storage of boxes). We want to sort the boxes by using a minimum number

of swaps.

Example of such a sequence of swaps:

2431 → 2341 → 2314 → 2134 → 1234.

We propose a simple greedy algorithm: Choose any two neighbored boxes

such that the left box has a larger identity number than the right box, and

swap them. Iterate this step until the ordering 1, . . . , n is established.

Actually, this is the well-known Bubblesort algorithm, but considered from a

different angle: We want to prove that this algorithm minimizes the number

of swaps, for every fixed input.

Recall that an inversion is a pair of numbers i < j such that i is located to

the right of j. Let inv denote the number of inversions in the initially given

ordering. (In the example above, we have inv = 4.)

Prove the following two statements (from which the optimality of the number

of swaps easily follows):

1.1. Every sequence of swaps that finally creates the ordering 1, . . . , n needs

at least inv swaps. (5 points)

1.2. The proposed algorithm performs exactly inv swaps. (5 points)

Make sure that your explanations are strict, conclusive, and complete.

3



Problem 2 (16 points)

An automatic system for train journey planning has to solve the following

type of problem: Given a place A of departure, a destination B, and a desired

(latest) arrival time at B, find a journey with the latest possible departure

time at A.

In order to design such a system we model the stations by nodes of a graph,

and the existing train rides by directed edges (C,D) annotated with de-

parture and arrival times. Note that there can exist many directed edges

between the same nodes C and D, with different times.

We assume the following restriction: When a user wants to travel from A

to B, the system allows only train rides (C,D) where D is closer to the final

destination B than C is. In other words, the geographical distance from D

to B must be smaller than from C to B. (In general it can be beneficial to

take a train to a place farther away from B, e.g., in order to catch a faster

train there. But for simplicity we ignore this possibility here.) All pairwise

distances are already known, i.e., precomputed. We also assume that all

trains are on time, i.e., no delays occur.

For every station X, we naturally define OPT(X) to be the latest possible

departure time at X such that B can still be reached before the desired time.

Describe how you would compute a connection with the latest possible de-

parture time OPT(A). You can omit the details of backtracing. Argue why

your algorithm is correct and works in polynomial time in the size of the

graph. (But you need not state a specific time bound.) Also point out how

your algorithm uses the mentioned restriction that every train must bring

the passenger closer to B.

Advice: Do not spend too much effort on creating a “nice formula” for

computing the OPT-values. It is probably more convenient here to describe

the computation in words, yet clearly and unambiguously.

4



Problem 3 (10 points)

In statistical surveys one often has to compute so-called percentiles with

equal step lengths. In an abstract formulation: We are given a huge set of

n numbers, and some integer k < n. We want to know, for all i = 1, . . . , k,

the element of rank b(i/k)nc in this set. (Remember that the “element of

rank r” is defined to be the rth smallest element.)

One may sort the set in O(n log n) time and then simply read off the results.

Instead we may also apply some O(n)-time algorithm for the Selection prob-

lem k times, which needs O(kn) time in total. But we can do better than

in both of these obvious approaches:

Give an algorithm that solves this problem already in O(n log k) time.

Advice: Apply divide-and-conquer from scratch. Do not use the “master”

theorem to figure out the time bound; here it is more convenient to compute

the time in an ad-hoc way. Still you may use, without proof, the known fact

that one element with any specific rank can always be found in O(n) time.

Problem 4 (12 points)

In the Set Packing problem we are given a family of subsets of a finite set

U , and an integer k, and the problem is to find k pairwise disjoint subsets

in this family, if they exist. Set Packing is NP-complete. In a restricted case

of this problem that we call Uniform Set Packing, all subsets in the given

family have equal size. Show that Uniform Set Packing is still NP-complete.

In detail:

4.1. Show that the problem is in NP. (2 points)

4.2. Describe a polynomial-time reduction. (6 points)

4.3. For your reduction proposed in 4.2, prove equivalence of the given and

the constructed instance. (4 points)

Hint to 4.2 (maybe obvious): Do a reduction from Set Packing, by adding

appropriate new elements that might also be outside U .

5



Problem 5 (12 points)

We are given a directed graph G = (V,E) with n nodes and m edges, and

some start node s ∈ V . The problem is to find a directed path that starts

in s and never ends (although the graph is finite!). More precisely, the

solution shall consist of a directed path P that starts and s and leads to

some directed cycle C. Then we can traverse P once, and then traverse C

in principle infinitely often. The path P is allowed to be empty (have zero

edges), which is equivalent to s ∈ C, or to be non-empty.

Give an algorithm that outputs such a path P and cycle C, or reports that

no solution exists in G. Explain why your algorithm is correct. Moreover, it

should run in O(n+m) time. You can (and should) use standard algorithms

known from the course material as building blocks, without describing their

internal details again. Describe only how you put them together.

6



Solutions (attached after the exam)

1.1. Consider any two neighbored boxes with numbers j (left box) and i

(right box), where i < j. This is an inversion, which disappears by swapping

these two boxes. Any other box that was to the left (to the right) of them

is still to the left (to the right) of them after the swap. Hence no other

inversions are created or deleted. It follows that every swap decreases inv

by only 1. Thus the necessary number of swaps is at least inv. (5 points)

1.2. The same arguments as in 1.1 show that every swap reduces inv also

by at least 1. (We do not repeat them here literally. Hence, after inv swap

operations, we have inv = 0, which means that all the boxes are now sorted.

(5 points)

2. First we (temporarily) delete all edges that violate the restriction. Now

the ordering by the distances to B defines a topological ordering in the re-

maining graph. We work on this topological ordering from behind. Trivially,

OPT(B) is the desired arrival time at B. Now consider any station X. Note

that OPT(Y) is already known for all stations Y that are closer to B than

X is. Consider any station X that we pass. If Y is chosen to be the next

station in our journey, we must arrive at Y before time OPT(Y). There-

fore we choose the train from X to Y (if there is any) that arrives before

OPT(Y) and has the latest departure time from X. Finally we take the

maximum of all these departure times at X (for all possible successors Y) to

obtain OPT(X). As soon as OPT(A) is computed, the problem instance is

solved. The actual connection can then be recovered from the OPT values

by backtracing. The algorithm runs in polynomial time because every di-

rected edge (train ride) is considered at most once, and only some auxiliary

computations like sorting are needed. (16 points)

3. Compute the median and split the instance in two halves, consisting of

the numbers being smaller and larger, respectively, than the median. In

both instances of half size, k/2 elements with given (and equidistant) ranks

must be determined. Doing this recursively will split the given instance, for

every j with 0 ≤ j < log2 k into 2j+1 instances of equal size. At the jth

recursion level we must find the median of 2j instances of length n/2j each,

which costs O(2jn/2j) = O(n) time. Hence we need O(n log k) time in total.

In the end we only have to find O(1) elements with specific ranks in every

instance. (10 points)

7



4.1. Uniform Set Packing is in NP, since we can check any given solution in

polynomial time. (2 points)

4.2. For a reduction, let I be an instance of Set Packing, and let m be the

maximum size of the subsets in I. We construct an instance J of Uniform

Set Packing as follows: To every subset in I, say with p elements, we add

m − p fresh elements (that do not appear elsewhere, not even in U). Now

all subsets in J have uniform size m. The number k is not changed. The

reduction obviously runs in polynomial time. (6 points)

4.3. Consider any solution with k subsets from I. The corresponding sub-

sets in J are then also pairwise disjoint, because we have added only fresh

elements. The reverse direction is clear: Removing elements from disjoint

sets keeps them disjoint. (4 points)

5. First we determine by BFS the set R of nodes that are reachable from s

on any directed paths. Other nodes cannot be in P and C. Thus we work

only in the graph H with node set R and all edges between them. We do

topological sorting of H. If it succeeds, we know that H is acyclic, and no

solution can exist. Suppose that topological sorting fails. Then we know

that some directed cycle C exists in H, and we can find one as follows. Since

all nodes in H are reachable from s, no nodes have indegree 0. Start in an

arbitrary node and go backwards until some node is encountered repeatedly.

At this moment we have found a cycle C. Then we run again BFS, but only

on H, to find a directed path P from s to an arbitrary node of C. All

algorithms involved in this procedure are known to run in O(n + m) time,

therefore we can omit a detailed time analysis. (12 points)

8


