
Algorithms Exam TIN093/DIT602

Course: Algorithms

Course code: TIN 093 (CTH), DIT 602 (GU)

Date, time: 24th October 2020, 14:00–18:00

Building: –

Responsible teacher: Peter Damaschke, Tel. 5405, email ptr@chalmers.se

Examiner: Peter Damaschke

Exam aids: As this is an individual home exam, all aids are allowed,

except any help from other persons.

Time for questions: email at any time during the exam

Solutions: will be published after the exam

Results: will appear in ladok

Point limits: CTH: 28 for 3, 38 for 4, 48 for 5; GU: 28 for G, 48 for VG;

PhD students: 38. Maximum: 60.

Inspection of grading (exam review): to be announced.

1

Instructions and Advice:

• First read through all problems, such that you know what is unclear

to you and what to ask the responsible teacher.

• Write solutions in English.

• Write your name and personal number in the submitted file.

Start every new problem on a new page.

• Submit your solutions as one PDF, preferably produced with some

text editor. If you scan handwritten pages, they must be legible (with

characters being easy to recognize and not too pale). Unreadable

solutions will not get points. Use the submission system.

• Answer precisely and to the point, without digressions.

Unnecessary additional writing does not only cost time.

It may also obscure the actual solutions.

• But motivate all claims and answers.

• Strictly avoid code for describing a complex algorithm.

Instead explain in your words how the algorithm works.

• If you cannot manage a problem completely, still provide your

approach or partial solution to earn some points.

• Facts from the course material can be assumed to be known.

You don’t have to repeat their proofs.

• Most important: Always write coherent text in your own

words describing your own understanding.

Remark: The number of points is not always “proportional” to the length

or difficulty of a solution, but it may also be influenced by the importance

of the topics and skills.

Good luck!

2

Problem 1 (5 points)

Some algorithm for converting an integer n given in decimal notation into

binary notation can be sketched as follows. Generate 2i in decimal notation,

for all integers i = 0, 1, 2, . . . , k, where k is the largest exponent with 2k ≤ n.

Then do the following for i = k, k − 1, k − 2, . . . , 0. If 2i ≤ n then set

n := n − 2i and write 1. If 2i > n then do not change n and write 0.

(Correctness is pretty obvious, you need not prove it here.)

Derive a time bound for this algorithm, as a function of k, in O-notation.

Make sure to explain it in sufficient detail. Operations with single digits are

assumed to be the elementary operations. Your bound should not be more

generous than necessary.

3

Problem 2 (15 points)

Let d be a fixed positive integer. We call a graph d-sparse if its nodes can be

ordered such that every node v is adjacent to at most d nodes to the right

of v (and to arbitrarily many nodes to the left of v).

These graphs are a natural generalization of trees; one can show that the

trees are exactly the connected 1-sparse graphs. However, the problem we

consider here is: Given a graph G with n nodes, decide whether G is a

d-sparse graph, and if so, produce an ordering of the nodes with the above

property. The following greedy algorithm easily comes to mind:

for i = 1 to n do the following:

pick any node v of smallest degree,

put it at the i-th position of the ordering,

and delete v and its incident edges from G

Clearly, if this algorithm goes through, and every selected node v has a

degree at most d in the remaining graph, then G is d-sparse. But the

concern is whether the converse is also true.

2.1. Prove that the proposed greedy algorithm is, in fact, correct. You

need to show: If G is d-sparse, then the algorithm will always succeed.

Hint: Induction on the number of nodes might be a good idea. If you do not

manage induction, you may give an informal (but still conclusive) argument.

(6 points)

2.2. We slightly “relax” the greedy algorithm as follows: Let us always pick

any node with degree at most d (not necessarily with the smallest degree).

Is this modified algorithm still correct? If you think yes, briefly argue why.

If you think no, give a counterexample. (2 points)

2.3. Explain how to implement the algorithm in 2.1 in such a way that it

runs in O(n) time. (Remember that d was fixed.) Your description may

be informal, but it should be specific enough for deriving the time bound.

Ideally, state the data structure(s) that you use. (7 points)

4

Problem 3 (10 points)

A “hidden subword” of a word A is any word obtained from A by deleting

some symbols and closing the gaps between the remaining symbols. For in-

stance, USE is a hidden subword of SUNSET (via -U-SE- as an intermediate

step).

Consider the following problem: For two given words A and B of length n

and m, respectively, find some longest common hidden subword C. That

is, C must be a hidden subword of both A and B and have the maximum

length among all words with this property.

Example, just for fun: The longest common subword hidden in

SCHOOL and COROLLARY is COOL.

Your task: Describe a dynamic programming algorithm that solves this

problem in O(nm) time.

Do not give pseudocode but provide the “recursive formula” for dynamic

programming, including initial values. Motivate correctness and time bound.

The details of backtracing can be omitted.

5

Problem 4 (5 points)

The O(n log n)-time algorithm for finding two closest points among n given

points in the plane was designed for the Euclidean distance. That is, the

distance between two points (u, v) and (x, y) was
√

(u− x)2 + (v − y)2.

Now let us consider the Manhattan distance |u− x|+ |v − y| instead. This

is the distance in a plane where one can “walk” on horizontal and vertical

lines only, similarly to the avenues and streets in Manhattan.

The question: Does the mentioned algorithm still work correctly for the

same problem with Manhattan distance, and with the same time bound?

Motivate your answer: “yes, without any changes, because ...”, or “yes, with

the following modifications, because ...”, or “no, it breaks down completely,

because ...”. (Of course, only one of these answers can be correct.) A short

summarizing statement of a few lines is sufficient; no long “essay” is expected

here.

6

Problem 5 (15 points)

We define a problem called Majority Independent Set as follows. Given an

undirected graph G = (V,E) with n nodes, does G contain an independent

set with at least n/2 nodes?

5.1. Show that Majority Independent Set is NP-complete.

But be careful: This is not a trivial consequence of the NP-completeness of

Independent Set, since our current problem is only a special case of it!

Hint: Give a polynomial-time reduction from Independent Set, by adding to

the given instance of the Independent Set problem either a clique or another

independent set, of suitable size. Do not forget to show equivalence of the

instances. (10 points)

5.2. After elections in a country, it is known how many seats every political

party has obtained in parliament. Now the parties want to find a coalition

that holds the majority of the seats. However, certain pairs of parties defi-

nitely cannot work together in a coalition. Show that the problem of finding

such a coalition is NP-complete, where the number of parties is considered

to be the instance size.

Remarks: Here you can argue more informally (yet logically precise!). You

can do this exercise also if you did not manage 5.1. From a practical point

of view, NP-completeness is not really important here, as the number of

political parties is very small. But there might be similar applications in

other domains. (5 points)

7

Problem 6 (10 points)

The Longest Path problem in DAGs was motivated by finding critical (i.e.,

most time-consuming) paths is project plans with precedence constraints.

Now we consider a slightly modified variant of this problem:

Given a DAG G = (V,E) with positive edge lengths. and a specific node

v ∈ V , find a directed path in G that contains v and is the longest path

with this property.

Present some algorithm that solves this problem in linear time (in the num-

ber of nodes and edges), with correctness argument and time analysis.

8

Solutions (attached after the exam)

1. The k + 1 powers of 2 have at most k digits each, and doubling every

power takes O(k) time. Hence all powers are generated in O(k2) time. Every

comparison and subtraction takes O(k) time as well. Hence the overall time

bound remains O(k2). (5 points)

2.1. Suppose that the claim is true for graphs with n nodes. Let G be a

graph with n + 1 nodes. Since G is d-sparse, it has some ordering O with

the desired property. We do not know O yet, but we know that there exists

some node of degree at most d (for instance, the first node in O). Hence

the algorithm will pick some node v with degree at most d. Let G′ be the

graph without v. Since deletion of nodes cannot produce more adjacent

nodes, G′ is also d-sparse. By the inductive hypothesis, the algorithm finds

an ordering for G′ as desired. Together with v as the first node, this yields

an ordering for G. – This is exactly the same type of argument as for

topological orderings of DAGs, albeit for undirected graphs, and for a very

different graph property. (6 points)

2.2. True. The proof in 2.1 does not hinge on the fact that v has the smallest

degree, but only on the degree being at most d. (2 points)

2.3. First we count the edges incident to every node. Since a d-sparse graph

has at most dn edges and d is fixed, counting needs O(n) time. (If more

edges exist, we can abort the algortihm with a negative result.) We put all

nodes of degrees 1 . . . , d in d doubly-linked lists. In each of the n steps of

the algorithm we take a node v from the first non-empty list, and we update

the degrees of all neighbors of v (since v gets deleted), and move them to

the correct lists. Since all actions need only O(d) time for every node v, the

time bound remains the same. – Extra remark: In the algorithm in 2.2, one

list is enough, but this does not affect the time bound. (7 points)

3. One way is to show equivalence of the problem to a variant of String

Editing where replacing of symbols is forbidden, however, here we present

a solution from scratch. Let OPT (i, j) be the length of a longest common

substring of the prefixes of the given strings, of lengths i and j, respectively.

Then we have OPT (i, 0) = OPT (0, j) = 0 for all i and j, and

OPT (i, j) = max{OPT (i− 1, j), OPT (i, j − 1), OPT (i− 1, j − 1) + ei,j},

9

where ei,j = 1 if the i-th symbol of A equals the j-th symbol of B, and

ei,j = 0 otherwise. Correctness is seen as follows. Whenever two symbols a

from A and b from B contribute to a common substring, they must fulfill

a = b, and they extend a common substring of the prefixes ending before a

and b. This situation is represented by the third case in the formula. The

first two cases just extend either of the prefixes, without adding a synbol

to the common substring. We compute OPT (n,m) and recover an optimal

solution by backtracing. The time is O(nm) since that many values are

computed, each in O(1) time. (10 points)

Clarification provided during exam: A “word” means any string of symbols.

4. The same algorithm can be used; the only difference is in the formula

for the distance (and possibly in the result for a given set of points). The

divide and conquer steps work exactly as before, and even the arguments in

the time analysis would be literally the same. (5 points)

5.1. Consider an instance of the original Independent Set problem, consisting

of a graph G = (V,E) and an integer k. We construct a graph H as follows.

If k < n/2 then we add s isolated nodes to G. Then G has an independent set

of size k if and only if H has some of size k+s. Since we want k+s = (n+s)/2,

we choose s := n−2k. If k ≥ n/2 then we add to G a clique with c nodes and

connect them by edges to all nodes of G. Then G has an independent set of

size k if and only if H has. (Here the new nodes do not change the solution

size.) Since we want k = (n+ c)/2, we choose c := 2k− n. Polynomial time

is obvious in both cases. Membership in NP is obvious, too: One can count

the nodes in a given solution and check the absence of edges in polynomial

time. (10 points)

5.2. Here the problem is to find, in a graph with weighted nodes (the parties

with their election results), an independent set whose weight is at least half

of the total weight. Membership in NP is obvious again: One can add

weights and check the absence of edges in polynomial time. Furthermore,

we can reduce Majority Independent Set to our problem, because the former

problem is the special case where all node weights are equal. Finally, the

result of 5.1 implies NP-completeness. (5 points)

6. Any solution must consist of a directed path P that ends in v and a

directed path Q that begins in v. Since G is a DAG, P and Q cannot share

10

any nodes. Moreover, P and Q are longest paths ending and starting in v,

respectively, otherwise we could replace any of them with a longer path and

improve the solution. Hence, instead of developing a new algorithm, we can

reduce our problem to two instances of the original Longest Path problem in

DAGs, one in the subgraph of all nodes from which v is reachable, and one

in the subgraph of all nodes reachable from v. These two subgraphs can first

be determined by BFS, using once the reversed edges and once the given

edges. (This preparatory step is not really necessary, but it may make the

separation of the two sub-problems clearer.) Hence the overall time remains

linear. (10 points)

11

