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1Month corrected, there was a mistake in the original document.
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Instructions and Advice:

• First read through all problems, such that you know what is unclear

to you and what to ask the responsible teacher.

• Write solutions in English.

• Start every new problem on a new page.

• Submit your solutions as one PDF, preferably produced with some

text editor. If you scan handwritten pages, they must be legible. Un-

readable solutions will not get points. Submit in Canvas and, for

additional safety, also mail a PDF attachment to ptr@chalmers.se.

• Answer precisely and to the point, without digressions.

Unnecessary additional writing may obscure the actual solutions.

• Motivate all claims and answers.

• Strictly avoid code for describing a complex algorithm.

Instead explain how the algorithm works.

• If you cannot manage a problem completely, still provide your

approach or partial solution to earn some points.

• Facts that are known from the course material can be used.

You don’t have to repeat their proofs.

Remark: The number of points is not always “proportional” to the length

or difficulty of a solution, but it may also be influenced by the importance

of the topics and skills.

Good luck!
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Problem 1 (9 points)

This warm-up exercise is more an extremal value problem rather than a

genuinely algorithmic problem, but it revolves around the understanding of

O-notation and the complexity of arithmetic calculations.

Background:

Suppose that, for some scientific application, we have to multiply real num-

bers with a rather high precision. The factors are given with many decimal

digits, but for the sake of speed we want to use only some limited number

of digits in the multiplications.

Some definitions:

If we have an approximate value v′ for some true value v, we define the

relative error of v′ by |v − v′|/v. Let v[k] be the number obtained from v

by truncation after k digits (starting from the first non-zero digit). That is,

v[k] consists of the first k digits of v.

Example: If v = 3.14159265358979323 . . . and k = 6 then v[k] = 3.14159.

1.1. We claim that the relative error of v[k] is O(10−k). Briefly explain why

this is true. (3 points)

1.2. Suppose that, instead of two exact factors x and y, only approximate

values x′ and y′ are available, where x′ has relative error r, and y′ has relative

error s. Instead of x · y we can only compute x′ · y′. Show that x′ · y′ has

relative error O(r + s). (2 points)

Now suppose that x and y are two given factors, and we are interested in

their product x · y. From 1.1 1and 1.2 it follows that x[k] · y[m] has relative

error O(10−k + 10−m). Two numbers with k and m digits can be multiplied

in O(km) time. This raises a natural question: How many digits of x and

y should we use in order to compute x · y as precisely as possible, within a

given time budget t? This leads to the final question:

1.3. Given a number t, how would you choose numbers k and m such that

km = t, and the expression E := 10−k + 10−m is minimized? Motivate your

answer – an informal but clear argument is enough.

Hint: Perhaps the easiest way is to notice that E = 1/1010
log k

+ 1/1010
logm

and log k + logm = log t is fixed. (4 points)

3



Problem 2 (8 points)

An (m + 1) × (n + 1) grid consists of all points with integer coordinates

(i, j), where 0 ≤ i ≤ m and 0 ≤ j ≤ n. Suppose that such a grid is given,

with two kinds of points: obstacles and free points. Assume that (0, 0) and

(m,n) are free points. For some reason we want to find a path from (0, 0)

to (m,n) with the following properties:

• The path uses only free points, it avoids obstacles.

• The path is monotone, that is: From a point (i, j) one can go to

(i+ 1, j) or (i, j + 1), but not to (i− 1, j) or (i, j + 1).

• The path has a minimum number of bends, i.e., changes of directions,

among all possible monotone paths from (0, 0) to (m,n).

All monotone paths from (0, 0) to (m,n) have the same length m+ n. But

here we are interested in the “simplest” path, not in the shortest path.

Example: The path (0, 0), (0, 1), (0, 2), (1, 2), (2, 2), (3, 2), (4, 2), (4, 3),

(5, 3), (6, 3) has exactly 3 bends.

2.1. Give an efficient algorithm that computes a monotone path from (0, 0)

to (m,n) that uses only free points and has a minimum number of bends.

(The destination might be unreachable due to the obstacles, and in this case

the algorithm must report that no such path exists at all.)

Hints: Use dynamic programming. Your “OPT function” may need a

third parameter besides i and j, or you may define a function on the edges

(rather than the points) of the grid. Define your function and state how it

is computed. You need not describe standard parts like initial values and

backtracing. (6 points)

2.2. Give a time bound for your algorithm, with motivation. (2 points)

4



Problem 3 (12 points)

Let n be a given positive integer. As you should know, an unknown positive

integer k ≤ n can be found by binary search, using log2 n comparisons of

the unknown number k with carefully chosen numbers i. (Comparisons have

the form “if k < i then ... else ...”). When we have reasons to expect the

unknown number k to be much smaller than n, it is nicer to have a good

time complexity as a function of k rather than n. In fact, it is possible to

determine k by at most 2 log2 k +O(1) comparisons as follows:

(i) First compare k with 2j , for j = 0, 1, 2, 3 . . ., until the smallest exponent

j with k < 2j is found.

(ii) Do usual binary search in the interval of integers i between 2j−1 and 2j .

3.1. Show that this algorithm needs, in fact, no more than 2 log2 k + O(1)

comparisons. – Note carefully that O-notation is not used for the entire ex-

presssion, because here we also care about the constant factor. And you are

advised not to apply recurrences here; this would make things unnecessarily

complicated. (5 points)

Next, amazingly, the constant factor 2 can be improved to 1 as follows:

(i) First compare k with 22
j
, for j = 0, 1, 2, 3 . . ., until the smallest exponent

j with k < 22
j

is found.

(ii) Then do binary search in the interval of integers between 2j−1 and 2j , in

order to find the exponent i with 2i−1 ≤ k < 2i. (For clarity: Only numbers

of the form 2i are compared with k in this phase, where 22
j−1 ≤ 2i ≤ 22

j
.)

(iii) Finally do usual binary search in the interval of integers between 2i−1

and 2i.

3.2. Similarly as above, show that this algorithm needs no more than

log2 k +O(log log k) comparisons. (7 points)
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Problem 4 (16 points)

Let G = (V,E) be an undirected graph and ` a function that assigns to every

edge e ∈ E a positive length `(e). An embedding of G in a geometric space

is a function µ that maps the nodes of V to points, such that for every edge

e = (u, v) the distance between the points µ(u) and µ(v) equals the given

length `(e). Note that it is allowed to map several nodes to the same point:

If nodes u and v are not joined by an edge, then µ(u) = µ(v) is permitted.

Now we consider the special case where G is merely a cycle and the geometric

space is merely the real line, with the usual distance.

Example: The cycle with nodes u, v, w, x, y, z and edge lengths given by

`(u, v) = 6, `(v, w) = 3, `(w, x) = 2, `(x, y) = 6, `(y, z) = 5, `(z, u) = 2

has an embedding in the line, for instance: µ(u) = 0, µ(v) = 6, µ(w) = 3,

µ(x) = 1, µ(y) = 7, µ(z) = 2. (You can check that the six distances are

exactly as required.)

Accordingly we define the decision problem Embed-Cycle: Given a cycle

with positive edge lengths, can we embed it in the real line?

Furthermore, it is known that Half-Half Subset Sum is NP-complete. This

problem asks: Given a set of n positive integers wi (i = 1, . . . , n), is there

some subset S such that
∑

i∈S wi =
∑n

i=1wi/2?

Here is a reduction from Half-Half Subset Sum to Embed-Cycle: Given n

positive integers wi (i = 1, . . . , n), we construct a cycle with n nodes and n

edges having these lengths wi, in arbitrary order.

4.1. Show: If the given instance of Half-Half Subset Sum has a solution,

then the constructed instance of Embed-Cycle has a solution. (6 points)

4.2. Show the converse: If the constructed instance of Embed-Cycle has a

solution, then the given instance of Half-Half Subset Sum has a solution.

(6 points)

4.3. Does 4.1 and 4.2 imply that Embed-Cycle is also NP-complete? Moti-

vate your answer. Note that you can also answer if you did not manage 4.1

and 4.2. (4 points)
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Problem 5 (15 points)

One main problem in decision making is to choose a sequence of actions

that maximizes the total reward using limited resources. Abstraction leads

to the following graph problem:

We are given a DAG G = (V,E) with n nodes and m edges, a start node

s ∈ V , two functions r and c that assign to every edge e ∈ E a positive

reward r(e) and a positive cost c(e), and a budget b. All these numbers

are integers. Find a directed path P with these properties: P starts in s,

the total reward on the traversed edges
∑

e∈P r(e) is maximized, but their

total cost does not exceed the budget:
∑

e∈P c(e) ≤ b. The end node of P

is arbitrary.

5.1. Give an algorithm that solves the above problem using dynamic pro-

gramming. Make sure that you describe all ingredients, i.e., a clear defini-

tion of your optimization function, and its computation. You can skip the

backtracing part. (10 points)

5.2. Give a time bound for your algorithm, with a careful motivation. The

time bound should be polynomial in n (or m) and b. (5 points)

7



Solutions (attached after the exam)

1. One possible way to argue: For the relative error it doesn’t matter where

the decimal point is. For any fixed k, in the worst case, v has the form

1.0 . . . 0999 . . . (with k − 1 zeros), because this minimizes v and maximizes

the truncated amount. By straightforward calculation, the relative error is

roughly 10−k in this case. (3 points)

1.2. Assume x′ < x and y′ < y; the other cases are similar. Then we have:

x′ = (1−r)x, y′ = (1−s)y, hence x′y′ = (1−r)x(1−s)y = (1−r−s+rs)xy,

and the assertion follows. (2 points)

1.3. Choose k = m =
√
t (rounded to integers). Optimality is seen as

follows. The sum log10 k + log10m is fixed. When we increase the smaller

(and hence decrease the larger) of log10 k and log10m, then E decreases.

Thus, E is minimized when k = m. (4 points)

2.1. We define OPT (i, j,H) to be the minimum number of bends needed

for a path from (0, 0) to (i, j), where the last step is horizontal. We define

OPT (i, j, V ) similarly, except that the last step is vertical. Furthermore,

these values are infinite if no such path exists. Since a bend is added if and

only if the direction changes, we have the calculation formula

OPT (i, j,H) = min{OPT (i−1, j,H), OPT (i, j−1, V )+1} for all free points

(i, j), and a similar formula holds for OPT (i, j, V ). (6 points)

2.2. The time is O(mn), simply because this is the number of values to

compute, and each of them needs constant time. (2 points)

3.1. Since j = log2 k + O(1) holds for the final j, phase (i) needs this

number of comparisons. Phase (ii) is binary search in a range of at most 2k

integers, hence it needs log2 k + O(1) comparisons, too. Together these are

2 log2 k +O(1) comparisons. (5 points)

3.2. Perhaps the most concise argument is: In phases (i) and (ii) we search

for the exponent of the power of 2 that is closest to k. This is the same

algorithm as in 3.1, but applied to the exponents, i.e., to logarithms. Due

to the result of 3.1, this needs log2 log2 k+O(1) = O(log log k) comparisons.

Phase (iii) is again ordinary binary search using log2 k+O(1) comparisons.

(7 points)
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4.1. Let S be a solution to the Subset Sum instance. We place an arbtrary

node at some arbitrary start point, then we traverse the cycle and place the

nodes, obeying the following rule. Let u be the current node and let v be the

next node on the cycle. If `(u, v) is in S, then we set µ(v) := µ(u) + `(u, v),

else we set µ(v) := µ(u)− `(u, v). (Go to the right/left if the edge length is

inside/outside S. Note that some edge lengths can be equal, but there is no

risk of confusion, as the edges are uniquely identified by their indices.) Since∑
i∈S wi =

∑
i/∈S wi, we return exactly to the start point when the traversal

is completed, hence we have correctly embedded the cycle. (6 points)

4.2. If the constructed instance of Embed-Cycle has a solution, then we

traverse the cycle, and whenever we go to the right on the real line, we put

the edge length in S. Since the cycle returns to its start point, the sums

of lengths of all edges going to the left and to the right are equal, thus we

obtain a correct solution S. (6 points)

4.3. Yes. The reduction runs in linear time, and due to the equivalence of

the instances, 4.1 and 4.2 establish a polynomial-time reduction of Half-Half

Subset Sum to Embed-Cycle. Furthermore, Embed-Cycle is in NP, because

we can verify a given affirmative solution in polynomial time. (4 points)

5.1. For every node v ∈ V and every non-negative integer k ≤ b we define

OPT (v, k) to be the maximum reward of a directed path from s to v with

total cost at most k. Then we have

OPT (v, k) = max{OPT (u, k − c(u, v)) + r(u, v)},

where the maximum is taken over all nodes u for which a directed edge (u, v)

exists. (The treatment of special cases like k < c(u, v) is omitted here.) This

holds true because every directed path to v must use some predecessor u, and

for every u and every possible budget it suffices to use some most rewarding

path that ends in u. The initial values are OPT (s, k) = 0 for all values k.

(10 points)

5.2. Some valid time bound is O(mb), for these reasons: Every edge is

processed only once for every non-negative k ≤ b, and every calculation of

a value OPT (v, k) takes O(1) time. The vertices v may be considered in a

topological order that can be computed in advance in O(m) time. (5 points)
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