Algorithms Exam TIN093/DIT602

Course: Algorithms

Course code: TIN 093 (CTH), DIT 602 (GU)
Date, time: 18 March 2020, morning 8:30-12:30
Building: Samhéllsbyggnad, SB Multisal
Responsible teacher: Birgit Grohe, Tel. 2037
Examiner: Birgit Grohe

Exam aids: one A4 paper (both sides) with own notes, dictionary,
printouts of the Lecture Notes, lecture slides and assignments (possibly with
own annotations).

Time for questions: Around one hour after start and one hour before end.
Solutions: will appear on the course homepage.
Results: will appear in ladok.

Point limits: CTH: 28 for 3, 38 for 4, 48 for 5; GU: 28 for G, 48 for VG; PhD
students: 38. Maximum: 60.

Inspection of grading (exam review): Will be announced on the course
homepage.

Instructions and Advice:

e First read through all problems, such that you know what is unclear to
you and what to ask the responsible teacher.

e Write solutions in English.

e Start every new problem on a new sheet of paper.

e Write your exam number on every sheet.

e Write legible. Unreadable solutions will not get points.

e Answer precisely and to the point, without digressions.
Unnecessary additional writing may obscure the actual solutions.

e Motivate all claims and answers.

e Strictly avoid code for describing a complex algorithm.
Instead explain how the algorithm works.

e If you cannot manage a problem completely, still provide your
approach or partial solution to earn some points.

e Facts that are known from the course material can be used.
You don’t have to repeat their proofs.

Remark: The number of points is not always “proportional” to the length or
difficulty of a solution, but it may also be influenced by the importance of the
topics and skills.

Good luck!

1

1.1

1.2

1.3

14

1.5

True or False? [15 points]

Given a connected, undirected graph G = (V, E). Is it possible to find
some node v € V such that removing node v and all its incident edges will
not result in an disconnected graph (i.e. the resulting graph will still be
connected)? If you think this is true give an algorithm (and possibly an
example graph to show how the algorithm works). If you think it is not
true, give a short proof/argument. [3 points|

Given an connected, undirected graph G = (V, E) with edge costs ¢;;, (ij) €
E where the edge costs are allowed to be both positive and negative. Do
any of the miniumum spanning tree (MST) algorithms presented in class
give the correct MST? If you think it is true, present a short proof or
argument why the algorithm(s) work. If you think it is not true, present
a counter example. [3 points]

Given an connected, undirected graph G = (V, E) with non-negative edge
costs ¢;j, (i) € E. If the edge costs are non-unique, then there can be
different MSTs with the same value. If the edge costs are unique, then
the MST is unique, that is only one MST with the minimum value exists
(these two facts are true, you don’t have to prove them). Here is the
True-or-False question: If the edge costs are non-unique, then there are
always at least two MSTs with the same value. If you think it is true,
give a short proof/argument. If you think it is not true, give a counter
example [3 points]

Given two functions f(n) = n* and g(n) = n**!, k > 0 integer. Then
7(n) € O(g(n)) and g(n) € O(f(n)). [3 points

It is possible to sort an array that only consists of 0’s and 1’s in linear
time. If you think it is true, give an algorithm and a short explanation
why it is linear. If you think it is not true, give a proof/argument why it
cannot be true. [3 points]

2 Longest Common Sub-sequence [10 points]

Consider a sequence of letters or numbers. A sub-sequence of a given sequence
is just the given sequence with 0 or more elements left out. Formally, given
two sequences X = (%1...%y) and Z = (z1...;) (assume m > k), then Z is
a sub-sequence of X if there exists a strictly increasing sequence (iq,...,i) of
indices of X such that for all j =1...%k we have z; = z;.

For example, consider sequence X = (A, B,C, B, D, A, B). Then Z = (B, C, D, B)
is a sub-sequence of X with indices (2, 3,5, 7).

Given two sequences X and Y, we say Z is a common sub-sequence if Z is a
sub-sequence of both X and Y.

Now consider that we want to find a longest common sub-sequence (LCS) of two
sequences X and Y, i.e., the common sub-sequence with the maximum length.

2.1 A brute force solution would be to enumerate all sub-sequences of X and
compare them to all sub-sequences of Y. How many sub-sequences would
one have to enumerate and how many comparisons would that result in,
in terms of O()? [2 points]

2.2 Give a dynamic programming algorithm to solve the LCS problem and
analyse its running time in terms of O(). You do not need to give a full
pseudo-code, a suitable function O PT() and an explain in words is enough.
Do not forget the initial condition(s). [8 points]

3 Recurrence Relations [10 points]

Suppose that to solve a given problem, we are given three different divide and
conquer algorithms. Let the size of the input be n.

3.1

3.2

3.3

Algorithm A finds a solution by dividing it into five sub-problems, each
of half the size of its input problem, recursively solves each of these five
sub-problems, and then combines their solution to form the solution of
the input problem in linear time.

Algorithm B finds a solution by recursively solving two sub-problems of
size n — 1 each, and then combines their solutions to form the solution of
the input problem in a constant time.

Algorithm C' finds a solution by recursively solving 9 sub-problems of size
n/3, and then combines their solutions to form the solution of the input
problem in quadratic time.

For each of the algorithms A, B and C', write down the recurrence relation.
[3 points]

Solve the recurrence relations and give the running time in terms of O()
for each of the algorithms (you may use the master theorem if applicable).
[6 points]

Which of the algorithms would you choose if asked to implement an as
efficient algorithm as possible? Give a short explanation of your choice.
[1 point]

4 Maximum Bottleneck Paths [8 points]

Assume you work for a company that operates vehicles which carry wide load.
Your task is to find paths from a starting location to a target location, but
instead of finding the shortest or cheapest path you are only interested in paths
that contain wide streets.

More formally: Given a directed graph G = (V, E) with edge weights w;; > 0,
(1,7) € E (where w;; denotes the width of corresponding street in the problem
described above). Given further a start node s and a finish node ¢. The the
Mazximum bottleneck problem is about find a path from s to t where the minimum
wyj;, called the bottleneck, is as large as possible.

Example: Given two s — ¢t paths P; and P», and let the edge weights of P, be
(5,7,3,9,11) and those of P; be (6,4,4,8). Then the bottleneck of P; is 3 and
the bottleneck of P, is 4. The path with the largest bottleneck is thus Ps.

Design an algorithm that solves this problem and analyse its running time in
terms of O(). Describe your algorithm both in words and in pseudo-code. (Hint:
maybe this problem reminds you of another prominent problem within the field
of algorithms.)

5 The Hitting Set Problem [10 points]

Given a set A = {ay,...,a,} and an accompanying collection of subsets of A,
B ={Bj,..., B} (meaning that B; C A for each i = 1,...,m).

We define a hitting set H for the collection B to be a subset of A (so H C A)
such that H N B; # @ for each i = 1,...,m. What this entails is that for each
¢t = 1,...,m in the collection B, H must contain at least one element from B;,
and it is in this sense that H is said to hit all the sets in the collection.

The Hitting Set problem (HS) asks the following question: given a set A and a
collection of subsets B, and given a number k, is there a hitting set H C A for
B such that |H| < k?

5.1 Show that HS is in NP. [2 points]

5.2 For some NP-complete problem Y, show that ¥ <, HS, ie.: give a
polynomial-time reduction from the problem Y of your choosing to HC.
Do so given the following steps:

5.2.1 Provide a translation from Y to HS: create an instance of HS given
the input to Y. Show that the translation can be done in polynomial
time.[4 points]

5.2.2 Show that if the translated instance of HS has a solution (a valid
hitting set), then Y has a solution. That is to say:

"If HS gives an answer yes for the translated instance, then Y also
gives an answer yes.” [2 points|

5.2.3 Show that if there is a solution for Y, then the translated instance
of HS has a solution (a valid hitting set). That is to say:

"If'Y gives an answer yes, then HS also gives an answer yes for
the translated instance.” [2 points]

As suggestions, you could take one of the following NP-complete problems:

3-SAT Given a set of (disjunctive) clauses C1,...,Cy over a set of Boolean
variables X = {1, ...,z }, being each clause C; of length 3. Is there a satisfying
truth assignment for X satisfying all clauses C1, ..., Cy?

Vertex Cover Given a graph G = (V, E), aset S C V is called a vertex cover
if every edge e € E has at least one end in S (i.e.: if e = (u,v) then at least
one of u,v is in §). Given a number k, does G contain a vertex cover of size at
most k7

Set Cover Given a set U = {uq, ..., u, } of n elements, a collection Sy, ..., Sy,
of subsets of U (S; C U for all j = 1,...,m), and a number k. Is there a
collection of at most k of these sets whose union is equal to all of U?

6 Running time analysis [7 points]

Let p be a positive integer. The following procedure computes 27:

power(p) {
pow = 1;
fori:=1to pdo
pow := pow * 2
return pow

}

4.1 Assume that multiplication can be done in constant time. What is the
running time of this algorithm in terms of the size of the input? (That is,
first think of what is the size of the input?) Explain. [2 points].

4.2 Assume that multiplication cannot be done in constant time, but ”costs”
depending on the size of the numbers to be multiplied. Assume "z * y”
costs O(size(z) * size(y)). What is the running time of this algorithm?
Explain. [3 points]

4.3 Is this a polynomial algorithm or not? Why? [2 points]

