Algorithms Exam TIN093/DIT602

Course: Algorithms

Course code: TIN 093 (CTH), DIT 602 (GU)
Date, time: 27th October 2018, 14:00-18:00
Building: L

Responsible teacher: Peter Damaschke, Tel. 5405
Examiner: Peter Damaschke

Exam aids: one A4 paper (both sides), dictionary,
printouts of the Lecture Notes and assignments
(possibly with own annotations).

Time for questions: around 15:00 and around 16:30.
Solutions: will appear on the course homepage.
Results: will appear in ladok.

Point limits: CTH: 28 for 3, 38 for 4, 48 for 5; GU: 28 for G, 48 for VG;
PhD students: 38. Maximum: G0.

Inspection of grading (exam review):
Time will be announced on the course homepage.



Instructions and Advice:

o First read through all problems, such that you know what is unclear
to you and what to ask the responsible teacher.

e Write solutions in English.

e Start every new problem on a new sheet of paper.

e Write your exam number on every sheet.

o Write legible. Unreadable solutions will not get points.

» Answer precisely and to the point, without digressions.
Unnecessary additional writing may obscure the actual solutions.

e Motivate all claims and answers.

e Strictly avoid code for describing a complex algorithm.
Instead ezplain how the algorithm works.

e If you cannot manage a problem completely, still provide your
approach or partial solution to earn some points.

o Facts that are known from the course material can be used.
You don't have to repeat their proofs.

Remark: The number of points is not always “proportional” to the length
or difficulty of a solution, but it may also be influenced by the importance
of the topics and skills.

Good luck!



Problem 1 (5 points)

We are given an undirected graph G = (V,E), where every node has a
positive weight, and we are given a integer k. The problem is to find a
connected subgraph H of G with exactly k nodes and with maximum total
weight of the nodes in H. (A subgraph consists of any subset of nodes of
G and of the edges between them. Do not confuse this with the notion of a
connected component.)

An obvious greedy algorithm is: Initially, let H be empty. First put some
node with largest weight in H. In every further step, add to H some node
that is adjacent to some of the nodes that are already in H (such that H
always remains connected). Repeat this step until H has k nodes.

Does this algorithm guarantee the optimal solution (and if so: why?), or can
you present a counterexample?



Problem 2 (10 points)

Suppose that B boxes are arranged in a line, and these boxes are indexed
accordingly with positive integers 1,2,3,...,B. We have n objects in the
boxes with indices z; < ... < Z,. For some reason we are requested to
store the objects, without changing their order, in such a way that no two
consecutive boxes are used. (In other words, the difference between the
indices of any two boxes containing objects has to be at least 2.) Moreover,
objects can be moved in one direction only, say, only to boxes with larger
indices. We want to move the objects as little as possible. To be precise,
let us denote the indices of the boxes in the solution by 1 < ... < Yn.
The problem is to minimizé the cost S 1 lyi — x| under the constraints
yir1 — ¥ > 2 and y; > x; for all 7. You may assume that B is large cnough,

such that there exists a solution.

For example, if n = 6 objects are in the boxes 11,12, 14, 16,17,22, we may
move them to the boxes 11,13,15,17,19,22, and the cost of this solution
would be 0+1+1+14+2+0=35.

There is a pretty obvious greedy algorithm that may solve this problem in
general. We describe it in code, because it has only a few lines:

for 2 :=2 ton do

begin

if ; < mj_q + 2 then z; = @i—1 + 2;
Yi = Ty

end

9.1. How much time does this algorithm take? (Consider arithmetic opera-
tions with integers as elementary operations.) Briefly motivate your answer.
(3 points)

2.9. Prove that, in fact, this greedy algorithm always yields a solution with
minimum cost. - Hint: Compare the greedy solution to a (hypothetical)
better solution and apply a suitable exchange argument or derive a contra-
diction. It may be a good idea to look at the leftmost box where the two
solutions differ. (7 points)



Problem 3 (10 points)

Suppose that we have the same situation as in Problem 2, with one important
change: It is allowed to move objects in both directions. Formally: Given n
integers z1 < ... < Zp, the problem is to find integers y; < ... < y, 50 as to
minimize the cost ) i) |y; — ;| under the constraints y;.1 —y; > 2 for all 4.

In the above example, the 6 objects in the boxes 11,12,14,16,17,22 may
now be moved to the boxes 10,12, 14, 16, 18, 22, and the cost of this solution
would beonly 1+0+0+0+1+0= 2.

So this additional degree of freedom can lower the costs but it also makes it
niore difficult to compute an optimal solution. Greedy approaches seem to
fail, and the next natural step is to try dynamic programming. (We do not
claim that this yields already the fastest possible algorithm, but at least it
works.)

Specifically, we define the following function: Let OPT(j, b) be the smallest
possible cost of a solution y1 < ... < y; for the first j objects that uses only
the first b boxes (that is, y; < b). We may formally define OPT(j,b) := oo
if no solution exists at all.

3.1. Derive a formula that allows to compute all values OPT'(j,b). Explain
why your formula is correct. — Hint: Certainly your formula must use the
given positions 2;; somehow, otherwise it cannot work. (6 points)

3.2. Remember that B denotes the total number of boxes. Give (and moti-
vate) a time bound of the dynamic programming algorithm that is based on
your formula from 3.1. It should be polynomial in n and B. But you are not
expected to describe the whole algorithm, with initializations, backtracing,
and so on. (4 points)

(21



Problem 4 (10 points)

The currency of some country exists as coins of values c1,.. ., Cn, where the
c; are integers (positive, of course!) with ¢; < ... < ca. That is, we assune
that the values are already sorted in increasing order.

We want to pay a certain amount m of money, and figure out whether the
exact amount mm can be paid with k = 4 coins. Note that some of these
coins may have equal values.

The problem with k = 2 coins can be solved in O(n) time. You can use this
result here without proof. (It was the subject of an assignment, but it was
presented there as a different story: renting rooms in a warchouse.)

The problem with k& = 4 coins can be naively solved in O(n?) time: Just
compute all O(n?) possible sums of 4 values and check whether some of them
equals m.

4.1. Give an algorithm for k = 4 that needs only O(n?logn) time. — Hint:
Divide the problem in two simpler problems and combine their solutions in
a suitable way. (However this is not divide-and-conquer, as no recursion will
be needed.) (8 points)

4.2. Why can't we simply use the dynamic programming algorithm for
Subset Sum, in order to achieve a time bound as in 4.17 (2 points)



Problem 5 (7 points)

A construction company gets the job to erect a number of buildings along
a street of length s. There exist only n prefabricated buildings, each with a
given length /; and a given height h;, for i = 1,...,n. Their widths (in the
direction orthogonal to the street) are all the same, hence the space (living
space, office space, or whatever) in the buildings is proportional to both
{; and h;. The company can choose among these n available prototypes,
and each prototype can be used at most once. The sum of lengths of the
buildings must not exceed the length of the street. The goal is to maximize
the total space in the buildings.

Is the problem of an optimal choice of buildings solvable in polynomial
time (in n) or is it NP-complete? Give either a polynomial-time algorithm
or a reduction from a known NP-complete problem. Of course, only one
of these options can be correct. In any case: Describe your algorithm or
reduction precisely and completely, not only in vague terms, and explain its
correctness.



Problem 6 (8 points)

In one of the assignments we defined the Half-Half Subset Sum problem: We
are given n integers wi, ..., Wn, and the problem asks whether some subset
of them has the sum 3% ; w;/2. This problem is NP-complete. You can use
this result here without proof.

Now suppose that we have n objects of sizes w1, .. ., wn, where n is an even
number, and the w; are non-negative integers. We want to divide these
objects among two persons, such that each person gets exactly n/2 objects
of total size 3™, w;/2. (Note that these are two conditions: Give both
persons the same number of objects AND the same total size.)

Prove that this problem is also NP-complete, by a reduction from Half-Half
Subset Sum. — Hint to get started: Create a suitable number of additional
“dummy” objects of size 0. Do not forget that a reduction requires an
equivalence proof, besides the construction of an instance.

Problem 7 (10 points)

Let G = (V,E) be a directed acyclic graph (DAG) with n nodes and m
edges, where every edge has some given positive weight. Furthermore, let
s,t € V be two nodes. We wish to find a directed path from s to ¢, such that
the minimum weight of the edges on this path is maximized. (This objective
is quite different from both the shortest and the longest path problem.)

Give an algorithm that solves this problem in O(n+m) time. And as usual,
motivate all claims.

To avoid a possible trap: The problem cannot be solved via spanning trees;
this method works only for undirected graphs and it also takes more than
linear time.



