
Solution of the Exam

October 31, 2013

Problem 1

1. For ease of presentation, we give an algorithm for the case of G being a forest.

Given any leaf node u in G, we choose its only adjacent node v as part of the vertex
cover. Then update G by removing all the incident edges of v from G. Repeat the
process continuously until there is no edge left.

2. The correctness of the algorithm follows from the observation: given the edge (u, v)
and u is the leaf node, any vertex cover should contain either u or v or both. The
minimum vertex cover cannot contain both (since removing u from the set gives
a smaller vertex cover, a contradiction); if the minimum vertex cover contains u
instead of v, we can as well replace u by v while still having a vertex cover of the
same cardinality.

Problem 2

1. Create a vertex for each club/residnet/party and also a source s and a sink t. s
has an arc of capacity 1 to all clubs. Each club Ci has an arc of capacity 1 to
a resident Rj if the latter belongs to the former. Each resident Rj has an arc of
capacity 1 to his belonging party Pk. Each party Pk has an arc of capacity uk to
the sink t.

2. The town council is possible to organize if and only if there is a flow of value c (the
number of clubs).

If there is a town council, we create a flow of value c by sending 1 unit of flow s
to Ci, from Ci to Rj if the latter represents the former, and send this unit of flow
from Rj to his belonging party Pk and then to the sink.

Conversely, if there is a flow of value c, find a path from s to t along which there is
positive flow. By construction, such a path takes the form of s−Ci−Rj −Pk − t.
Let Rj represent Ci and decrease the flow by 1 unit along this path. Now repeat
until the flow is down to 0.

1

Problem 3

1. Split the array into two sub-arrays A[1 · · ·n/2] and A[n/2+1 · · ·n/2]. The recursion
should report the number of inversions within each sub-array and sort it.

2. The combination step should count the number of inversions “across” the two sub-
arrays. Use two indices i and j, both initialized to be 1. Use the counter inv to
record the total number of inversions. Initially, inv is the sum of the inversions
within the two sub-arrays. For convenience, call the two returned (and sorted)
sub-arrays B and C. We also create another linked list A, initialized to be empty;
A will be the sorted array.

The algorithm works as follows: if B[i] > 4C[j], then increase inv by the number
of remaining elements in B (that is, n/2 − (i − 1)). Next if B[i] ≤ C[j], then
append B[i] to the end of A and increase i by 1; on the other hand, if B[i] > C[j],
append C[j] to the end of A and increase j by 1. If i or j is greater than n/2, then
just append the rest of the other array to the end of A and then stop. Otherwise,
continue this process.

3. Let the running time be T (n). Then T (n) ≤ 2T (n/2) + cn, where c is some
constant. Each “layer” in the recursion takes O(n) time. As there are O(log n)
layers, we need O(n log n) time in total.

Problem 4

1. The certificate is any subset of edges E′ ⊆ E. The certifying algorithm just checks
the following: (1)

∑
e∈E′ c(e) ≤ C, (2) E′ is a spanning tree, and (3) each vertex v

has |E′ ∩ δ(v)| ≤ b(v). If all three are yes, return yes, otherwise, return no.

2. Let G = (V,E) be the given graph in an instance of the Hamiltonian path problem.
In the reduction, use the same graph, let c(e) = 1 for all edges e ∈ E, b(v) = 2 for
all vertcies v ∈ V , and set the cost upper bound C = |V | − 1. We claim that the
graph G has a Hamiltonian path if and only if there is a spanning tree of cost at
most C satisfying the degree constraints b.

If P is a Hamiltonian path, P has cost |V |− 1, every vertex has at most 2 incident
eges in P , and all vertices are connected in P (hence P is spanning).

In the other direction, if there is a spanning tree T of cost at most C, since all
edges e have cost c(e) = 1, there are exatly |V | − 1 edges in T and every vertex
has degree at most 2 in T . Therefore, T is a path visiting all vertices, i.e., a
Hamiltonian path.

Problem 5

1. Start from an arbitrary vertex and follow edges that have not been used before.
Continue this process. As the given graph is connected, every vertex has degree at

2

least 2, eventually we will visit a vertex that has been visited before. This gives a
cycle.

2. Remove C from G. Let the remaining connected subgraphs be G1, · · ·, Gk. Each
Gi still has even degree and has less edges than G, so the induction hypothesis
states that it has an Eulerian tour Pi.

Observe that C must have some vertex in Gi (maybe more than one). Choose a
unique one and call it vi. We can “stitch” the Eulerians tours Pi and C together
to form an Eulerian path P for the entire graph G.

Tranverse the edges in C and add them into P one by one. If we visit some vertex
vi in Gi, then add the path pi (starting and ending at vi) into P . The final outcome
is an Eulerian path.

3. We solve by recursion. First find a cycle C in G as done in the first part (this
can be obviously done in linear time). Let G1, · · ·, Gk be the remaining connected
sub-graphs. Find the Eulerian path Pi in Gi using recursion. Then construct the
Eulerian path P using C and the Eulerian paths Pi as shown in the second part.

To see this is polynomial time, observe that each time a recursion happens, we
remove a cycle from the original graph. As there can be O(|E|) cycles in G, we
conclude that the running time is polynomial.1

Problem 6

1. Choose all vertices with odd indices.

2. w(1).

3. OPT (i) = max{OPT (i− 2) +w(i), OPT (i− 1)}. There are only two possibilities:
i is or is not in OPT (i). In the former case, i− 1 cannot be part of OPT (i). Then
OPT (i− 2) gives the best solution among all vertices from 1 to i− 2. In the latter
case, OPT (i− 1) gives the best solution among all vertices from 1 to i− 1.

4. OPT (n).

5. O(n).

1In fact, one can get a linear time algorithm if one is more careful.

3

