Algorithms Exam *

Oct. 19, 2010
kl 14 - 18
byggnad M

Ansvarig:
Devdatt Dubhashi Tel. 073 932 2226 Rum 6479 EDIT

Points : 60

Grades: Chalmers 5:48, 4:36, 3:28
GU VG:48, G:24
PhD students G:36

Helping material : course textbook, notes

e Recommended: First look through all questions and make sure that you under-
stand them properly. In case of doubt, do not hesitate to ask.

e Answer all questions in the given space on the question paper (the
stapled sheets of paper you are looking at). The question paper will
be collected from you after the exam. Only the solutions written in
the space provided on the question paper will count for your points.

e Use extra sheets only for your own rough work and then write the final answers
on the question paper.

e Try to give the most effciient solution you can for each problem - your solution
will be graded on the basis of its corectness and efficiency. In particular a brute
force solution will not get any credit.

e Answer concisely and to the point. (English if you can and Swedish if you must!)
Your solution will be graded both for correctness and efficiency - a
faster algorithm will get more credit than a slower one.

e Code strictly forbidden! Motivated pseudocode or plain but clear English /Swedish
description is fine.

Lycka till!

19010 LP 1, INN200 (GU) / TIN090 (CTH).



Problem 1 Median [10] The input consists of two arrays A[l...n] and B[1...n+1]
containing positive integers, all distinct and both in sorted order. Give a fast algorithm
to find the median of all the 2n+1 numbers i.e. a value Afi] or B[j] such that exactly half
the numbers are less than this value and half greater. For example, if A = (3,12, 14,44]
and B = [5,17,28, 31, 40], then the median is 17 = B[2]. For full credit, your algorxthm
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Problem 2 Bottlenecks [10] Consider a network of computers represented by a
graph G = (V, E): the vertices are computers and an edge represents a communication
link between the two endpoints. Each edge e has a number c, associated with it which
is the maximum rate of data transmission it can support. You need to send data form
your computer to your friend’s computer at the maximum possible rate. If P is a path
in G between the vertex u representing your computer and the vertex v representing
your friend’s, then the maximum rate of sending data along P is determined by the
minimum rate c. of an edge on the path P: this is called the bottleneck rate of the path
P. Thus you want to find a path P between u and v with maximum bottleneck rate.
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(a) Give a greedy algorithm to solve the problem. [4 pts]
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(b)Arguethat ybur algorithm is correct and optimal. [3pts]
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(¢) What is the running time of your algorithm? Justify with the appropriate data

structures. [3 pts]
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Problem 4 Planning Cycle Trip [10] You are planning a cycle trip in the summer
along the east coast starting at Stockholm and ending in Kiruna. You begin on day 1 at
Stockholm and on day k you arrive at Kiruna, in between there are n towns numbered
1..n where you can rest for the night. Let us number Stockholm as 0, Kiruna as n + 1.
"There is an array d[l...n+ 1] such that the distance from Stockholm to city 7 is given
by d[i] and so the distance between succesive towns ¢ and 7 + 1 is given d[i + 1] — d[].
To rest for the night at the only “vandrahem” (youth hostel) in city i costs c[¢], for
i =1---n. Assume c[0] = 0 = ¢[n + 1]. The total distance to cycle is d[n + 1] and
you would like to spread this as evenly as possible between the k days, so that on
average you cycle d := d[n + 1]/k each day. However, this may not always be possible
and sometimes you cycle a bit more and sometimes a bit less. If you cycle y km on a
certain day, you penalty for this day is (y — d)2. Thus if you cycle y; km on day i and
stay the night at vandrahem in city v;, then your total cost is

> {clvi] + (wi — 4%}

1<i<k

Your goal is to find a schedule to cycle that minimizes this total cost.
In this problem, you develop a dynamic programing solution to the problem. Let
OPT(i,7) be the minimum cost for ending at town 7 on day j.

(a) [1 pt] In this notation, what is the final solution we want?
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(b) [1 pt] What is the value of OPT(0, 5)? OPT(i,0)? 15t be T
OPT(0,3) = > 0+ (0-3)* =43 OPT(i,0) =o0 > oy
(c) [3 pts] Write a fé;cfil;r}ence for OPT(i,7). (HINT: consider what is done on day
j-) ) , ) K
SPT (0, 5) = rain{cll+(dLl1-d0n-a) +opT (%, i~

(d) [2 pts] Using (b) and (c), implement the recurrence efficiently in pseudocode.
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