1. 10 marks

Construct a solution to reliable, totally ordered multicast in a synchronous system, using a reliable multicast and a solution to the consensus problem.

2. 25 marks

- (a) Which type of faults are called Byzantine faults?
- (b) Prove that it is impossible to reach agreement in a system with three processes if one of them is Byzantine faulty.
- (c) How can the above proof be generalised for a system with n processes?
- (d) Is it possible to reach agreement in a system with three processes if one of them is Byzantine faulty by using authentication (unforgeable signatures)? If your answer is yes, describe an algorithm. If your answer is no give a proof to support it.

3. 10 marks

- (a) Describe briefly the three basic aproaches to handle replication.
- (b) Describe in more detail the quorum consensus method.
- (c) Use the quorum consensus method to build a distributed replicated stack. The stack should be imperented on top of 5 replicas and should tolerate 2 replica crashes for both *push* and *pop* operations.

4. 15 marks

- (a) Describe an algorithm that processors of an asynchronous network G=(V,E) can use in order to broadcast information. The processors of the network are the nodes of the graph G=(V,E) and the physical links that connect the processors are the edges of G=(V,E).
- (b) What is the time and communication complexity of your algorithm? Prove it.
- (c) Give the definition of the time and communication complexity of a distributed algorithm.