
EXAM

Testing, Debugging, and Verification

TDA567/DIT082

DAY:06 April 2018 TIME: 14:00 - 18:00

Responsible: Srinivas Pinisetty (Lecturer), Wolfgang Ahrendt (examiner)

Extra aid: Only dictionaries may be used. Other aids are not allowed!

Grade intervals: U: 0 – 23p, 3: 24 – 35p, 4: 36 – 47p, 5: 48 – 60p,
G: 24 – 47p, VG: 48 – 60p, Max. 60p.

Please observe the following:

• This exam has 15 numbered pages.
Please check immediately that your copy is complete.

• Answers must be given in English.
• Use page numbering on your pages.
• Start every assignment on a fresh page.
• Write clearly; unreadable = wrong!
• Fewer points are given for unnecessarily complicated solutions.
• Read all parts of the assignment before starting to answer the first question.
• Rules of the weakest pre-condition calculus are provided in Page 15.

Good luck!

1

Exam/Tenta TDA567/DIT082,06 April 2018 3

Assignment 1 (Testing) (16p)

(a) Consider the program below. It computes the length of the longest
strictly increasing subsequence in the array.
Draw a control-flow graph for the method longestIncrSeq and use it to
write down a test suite which satisfies branch coverage for this program.
Write your test cases in the format array --> result, where array is
an integer array and result is the expected result on this input. Your
test suite should be minimal in the sense that no two inputs should cover
the same branches.

(7p)

// pre: arr is non-null and arr.length >= 1

// post: return the length of the longest uninterrupted

// increasing sequence in arr.

public static int longestIncrSeq(int[] arr) {

if (arr.length == 1)

return 1;

else {

int i = 1;

int count = 1;

int maxcount = 1;

while (i < arr.length) {

if (arr[i - 1] < arr[i])

count = count + 1;

else{

if (count > maxcount)

maxcount = count;

count = 1;

}

i = i + 1;

}

if (count > maxcount)

return count;

else

return maxcount;

}

}

Continued on next page!

Exam/Tenta TDA567/DIT082,06 April 2018 4

(b) Another coverage criteria is decision coverage. Briefly explain what this
is, and indicate whether or not your test suite from part (a) satisfies this
criteria as well.

(2p)

(c) In addition to decision coverage, we discussed another two kinds of logic
coverage in class. Describe these. Also describe the relationship between
the three logic-based criteria.

(3p)

(d) Construct a minimal set of test cases for the code snippet below, which
satisfies Modified Condition Decision Coverage.

(4p)

int method1(int a, int b, int c)

{

if ((b > c && c == 6) || (a < 2))

return a;

else

return c;

}

Solution
[7p, 2p, 3p, 4p]

(a)
4 points for the correctly drawn control graph, and 3 points for a test suite which has
branch coverage.

For Branch coverage, need 4 test cases, e.g.

[1] -> 1

[1,2] -> 2

[1,0] -> 1

[1,2,0] -> 2

(b)
For decision coverage, the test suite must contain test cases which cause each decision
in the program (i.e. if-statements, loop guards) to evaluate to both true and false. As
the test suite in (a) satisfies branch-coverage, it will also have exercised all possible
outcomes of decisions, so it satisfies decision coverage as well.

(c)
A correct answer should describe Condition Coverage and MCDC. For full points, the
student must also state the subsumption relationships between the different criteria:

Condition Coverage (CC) For a given condition c in a decision d, CC is satisfied by
a test suite TS if it contains at least two tests, one where c evaluates to true and one
where it evaluates to false. For a given program p, CC is satisfied by TS if it satisfies
CC for all conditions c ∈ C(p).

Modified Condition Decision Coverage (MCDC) For a given condition c in deci-
sion d, MCDC is satisfied by a test suite TS if it contains at least two tests, one where

Exam/Tenta TDA567/DIT082,06 April 2018 5

c evaluates to false, one where c evaluates to true, d evaluates differently in both, and
the other conditions in d evaluate identically in both. For a given program p, MCDC
is satisfied by TS if it satisfies MCDC for all conditions c ∈ C(p).

• DC and CC are orthogonal (i.e. neither subsume the other)

• MCDC subsumes DC and CC.

(d) {a = 4, b = 1, c = 6} {a = 1, b = 1, c = 6} {a = 4, b = 7, c = 6} {a =

4, b = 7, c = 2}

Exam/Tenta TDA567/DIT082,06 April 2018 6

Assignment 2 Debugging: Minimization using DDMin (7p)

(a) The ddMin algorithm computes a minimal failure inducing input se-
quence. It relies on having a method test(i) which returns PASS if
the input i passes the test or FAIL if the i causes failure (i.e. bug is
exhibited).
Explain what we mean by granularity in the context of the ddMin algo-
rithm.

(2p)

(b) Suppose our input consists of sequences made out of the letters A-Z. Let
test return FAIL whenever the sequence contains two or more occur-
rences of the letter G somewhere in the sequence. The G’s does not need
to be consecutive.
Simulate a run of the ddMin algorithm and compute a minimal failing in-
put from an initial failing input [G,B,R,G,G,Y,G,X]. Clearly state what
happens at each step of the algorithm and what the final result is. Cor-
rect solutions without explanations will not be given the full score.

(5p)

Solution
[2p, 5p]

(a)
ddMin is a ”divide and conquer” algorithm. The granularity decides in how many
chunks we should divide the input into at each iteration. Initially, we start by splitting
the input in two (granularity n = 2). If both halves pass the test, we must increase
the granularity (number of chunks) to min(n ∗ 2, len(input)), where n is the current
granularity.

Similarly, we may have to decrease the granularity when we find a smaller chunk which
fails the test to: max(n− 1, 2), where n is the current granularity.

(b)
Full points only if the answer motivates why the granularity changes as it does, and a
motivation on the algorithm’s termination criteria. Start with granularity n = 2 and
sequence [G,B,R,G,G,Y,G,X]. The algorithm will remove one chunk at the time. When
it finds a failing test case, the algorithm will recurse on that input, i.e. it performs a
depth-first search for the solution.

The number of chunks is 2
==> n : 2, [G, Y, G, X] FAIL (take away first chunk)

After a failure, we adjust the number of chunks as follows:

Adjust number of chunks to max(n− 1, 2) = 2
==> n : 2, [G, X] PASS (take away first chunk)
==> n : 2, [G, Y] PASS (take away second chunk)

Exam/Tenta TDA567/DIT082,06 April 2018 7

All tests passed, so we need to divide the input into smaller chunks. Increase number
of chunks to min(n ∗ 2, 4) = 4
==> n : 4, [Y, G, X] PASS (take away first chunk)
==> n : 4, [G, G, X] FAIL (take away second chunk)

Adjust number of chunks to max(n− 1, 2) = 3
==> n : 3, [G, X] PASS (take away first chunk)
==> n : 3, [G, X] PASS (take away second chunk)
==> n : 3, [G, G] FAIL (take away third chunk)

Adjust number of chunks to max(n− 1, 2) = 2
==> n : 2, [G] PASS (take away first chunk)
==> n : 2, [G] PASS (take away second chunk)

As n == len([G, G]) the algorithm now terminates with minimal failing input [G, G]

Exam/Tenta TDA567/DIT082,06 April 2018 8

Assignment 3 (Debugging: Backward dependencies) (7p)

(a) When is a statement B data dependent on a statement A? (1p)

(b) When is a statement B control dependent on a statement A? (1p)

Consider the small Dafny program below:

1 method M1(n : nat) returns (b : nat){

2 if(n == 0)

3 { return 0; }

4 var a := 0;

5 var k := 1;

6 b := 1;

7 while (k < n)

8 {

9 a, b := b, a+b;

11 k := k+1;

12 }

13 }

(c) On which statement(s) is/are the statements in line 9 data dependent?
On which statements is line 11 backward dependent? Also state why.

(5p)

Solution
[1p, 1p, 2 + 3p]
(a) B is data dependent on A iff (i) A writes to a location v that is read by B and
(ii) there is at least one execution path between A and B in which v is not overwritten.

(b) B is control dependent on A iff B’s execution is potentially controlled by A. More
precisely, statement B is control dependent on statement A iff: (i) A is a control
statement (while, for, if or else if), and (ii) Every path in the control flow graph from
the start to B must go through A.

(c)
Line 9 is data-dependent on lines 4 and 6 as well as itself, as it may read the values of
the previous iteration. 1 point for lines 4 and 6, 2 points if also line 9 is included in the
answer.

Line 11 is backward dependent on lines 5 and 7 for the first iteration of the loop. On
repeated iterations of the loop, it is backward dependent on lines 7 and on itself.

Exam/Tenta TDA567/DIT082,06 April 2018 9

Assignment 4 (Formal Specification: Logic) (4p)

(a) Consider the following propositional logic formula, where p and q are
Boolean variables:

((p ∨ q) ∧ (q ∨ r)) =⇒ (p ∨ r)

Is the above formula satisfiable? Is the above formula valid? Show and
explain why?

(2p)

(b) Represent each of the following English sentences in first-order logic,
using reasonably named predicates, functions, and constants.

1. All entries in the array a are greater than 0.

2. There is at least one occurrence of the number 7 in the array a.

(2p)

Solution
(a)

p q r p ∨ q q ∨ r p ∨ r ((p ∨ q) ∧ (q ∨ r)) Formula
T T T T T T T T
T T F T T T T T
T F T T T T T T
T F F T F T F T
F T T T T T T T
F T F T T F T F
F F T F T T F T
F F F F F F F T

From the above truth table, we can notice that the formula ((p∨q)∧(q∨r)) =⇒ (p∨r)
can be true and is thus satisfiable, but it is not valid since it is not always true.

(b)
1. All entries in the array a are greater than 0.
∀ i : int. 0 ≤ i < a.Length→ a[i] > 0

2. There is at least one prime number in the array a

∃ i : int. 0 ≤ i < a.Length ∧ a[i] = 7

Exam/Tenta TDA567/DIT082,06 April 2018 10

Assignment 5 Formal Specification (1) (6p)

Consider the following method that gives a reversed copy of an array in Dafny. For
example, the result of running the method on an array containing [2,4,3,1] will be a
new array containing [1,3,4,2].

method reverse(a : array<int>) returns (res : array<int>)

requires a != null

ensures ?

{

var i := 0;

res := new int[a.Length];

while i < a.Length

invariant ?

{

res[i] := a[a.Length - 1 - i];

i := i + 1;

}

}

(a) Complete the specification of reverse by filling in the ensures field. (3p)

Solution

res != null && res.Length == a.Length && forall i : int :: 0 <= i < a.

Length ==> res[i] == a[a.Length - 1 - i]

(b) Provide a loop invariant such that Dafny will be able to prove partial
correctness.

(3p)

Solution

invariant 0 <= i <= a.Length

invariant forall j :int :: 0 <= j < i ==> res[j] == a[a.Length - 1 - j]

Exam/Tenta TDA567/DIT082,06 April 2018 11

Assignment 6 Formal Specification (2) (6p)

method GetMin(arr : array<int>) returns (min : int)

requires ?

ensures ?

{

// To be completed.

}

Complete the above Dafny program, which is supposed to compute the minimum of an
array. In addition to the method body, your answer should include suitable pre- and
post-conditions, as well as loop invariants.

Solution
[6p]

method GetMin(arr : array<int>) returns (min : int)

requires arr != null && arr.Length > 0;

ensures forall i :: 0 <= i < arr.Length ==> min <= arr[i];

ensures exists i :: 0 <= i < arr.Length && min == arr[i];

{

var i := 1;

min := arr[0];

while(i < arr.Length)

invariant 0 < i <= arr.Length;

invariant forall j :: 0 <= j < i ==> min <= arr[j];

invariant exists j :: 0 <= j < i && min == arr[j];

{

if(arr[i] < min)

{min := arr[i];}

i := i + 1;

}

}

Exam/Tenta TDA567/DIT082,06 April 2018 12

Assignment 7 (Formal Verification) (14p)

This question is about verifying the following program:

y = x;

z = 0;

while (y > 0) {

z = z + x;

y = y - 1;

}

The program takes a integer x as input and its specification is:

requires: x > 0

ensures: z = x * x

(a) Briefly, explain what properties a loop invariant for partial correctness
must satisfy.

(2p)

(b) Give a loop invariant for the while-loop in the program above (i.e. a loop
invariant which suffices for proving partial correctness).

(2p)

(c) Prove partial correctness of the above program using the weakest pre-
condition calculus (the rules of the calculus are provided in the last page).

(6p)

(d) To extend the verification from partial to total correctness, what needs
to be proved in addition?

(2p)

(e) Explain what a variant is, and state a variant for the while-loop in the
above program.

(2p)

Solution
[2p, 2p, 6p, 2p, 2p]

(a) A loop invariant for partial correctness is a logical formula which

• Is implied by the precondition, hence it holds before the loop is entered.

• Is preserved by each iteration of the loop.

• Holds after the loop is exited and thus implies the post-condition.

(b) Loop invariant:

x * y + z = x * x & y >= 0

(c) A. Initially Valid

x > 0 -->

[y:=x, z:=0] Inv

Apply seq, and assignment rules and obtain the FOL formula:

Exam/Tenta TDA567/DIT082,06 April 2018 13

x > 0 -> x * x + 0 = x * x & x > 0

To prove the two conjuncts:
x * x + 0 = x * x: follows by simplification and reflexivity.
x > 0: follows from the pre-condition.

B. Invariant Preserved
We have

{ Inv & y > 0 }

[]

z = z + x;

y = y - 1;

{ Inv }

Apply the assignment rule twice (followed by exit) to obtain:

x * y + z = x * x & y >= 0 & y > 0

-->

x * (y-1) + (z + x) = x * x & (y-1) >= 0

First conjunct:
x * (y-1) + (z + x) = x * x

Expands to
x * y - x + z + x = x * x

simplifies to
x * y + z = x * x

which follows directly from the identical premiss.

Second conjunct:
The premise y > 0 implies that y-1 >= 0.

C. Use Invariant

{Inv & ! y>0}

[]

{ z = x * x }

We obtain the FOL formula

x * y + z = x * x & y >= 0 & ! y>0

-->

z = x * x

The premises y >= 0 and !y>0 implies that y=0. Setting y=0 in the first conjunct in
the premise simplifies it to z = x * x, from which the conclusion trivially follows.

(d) To prove total correctness we also need to prove that the loop terminates.

(e) A variant is an expression which decrease at each iteration of the loop, and that is
bounded by some value (typically zero). A variant for our loop is simply y.

Exam/Tenta TDA567/DIT082,06 April 2018 14

(total 60p)

Exam/Tenta TDA567/DIT082,06 April 2018 15

Additional Notes

Weakest pre-condition rules:

Assignment: wp(x := e, R) = R[x 7→ e]

Sequential: wp(S1;S2, R) = wp(S1, wp(S2, R))

Assertion: wp(assert B, R) = B && R

If-statement:
wp(if B then S1 else S2, R) =

(B ==> wp(S1, R)) ∧ (!B ==> wp(S2, R))

If-statement (empty else branch):
wp(if B then S1, R) =

(B → wp(S1, R))&&(!B ==> R)

While:

wp(while B I D S, R) =
I
∧ (B && I ==> wp(S, I))
∧ (!B && I ==> R)
∧ (I ==> D >= 0)
∧ (B && I ==> wp(tmp := D;S, tmp > D))

