
SAMPLE EXAM 1

Testing, Debugging, and Verification

TDA567/DIT082

Extra aid: Only dictionaries may be used. Other aids are not allowed!

Grade intervals: U: 0 – 23p, 3: 24 – 35p, 4: 36 – 47p, 5: 48 – 60p,
G: 24 – 47p, VG: 48 – 60p, Max. 60p.

Please observe the following:

• This exam has 10 numbered pages.
Please check immediately that your copy is complete

• Answers must be given in English
• Use page numbering on your pages
• Start every assignment on a fresh page
• Write clearly; unreadable = wrong!
• Fewer points are given for unnecessarily complicated solutions
• Indicate clearly when you make assumptions that are not given in the assignment

Good luck!

1





Samle Exam TDA567/DIT082 2014 3

Assignment 1 (Testing) (12p)

(a) Consider the program below. It computes the length of the longest strictly
increasing subsequence in the array.
Draw a control-flow graph for the method longestIncrSeq and use it to write
down a test-suite which satisfies branch coverage for this program.
Write your test-cases in the format array --> result, where array is an
integer array and result is the expected result on this input. Your test-suite
should be minimal in the sense that no two inputs should cover the same
branches.

// pre: arr is non-null and arr.length >= 1

// post: return the length of the longest uninterrupted

// increasing sequence in arr.

public static int longestIncrSeq(int[] arr) {

if (arr.length == 1)

return 1;

else {

int i = 1;

int count = 1;

int maxcount = 1;

while (i < arr.length) {

if (arr[i - 1] < arr[i])

count = count + 1;

else{

if (count > maxcount)

maxcount = count;

count = 1;

}

i = i + 1;

}

if (count > maxcount)

return count;

else

return maxcount;

}

}

Continued on next page!



Samle Exam TDA567/DIT082 2014 4

(b) Another coverage criteria is decision coverage. Briefly explain what this is,
and indicate whether or not your test-suit from part (a) satisfies this criteria
as well.

(c) In addition to decision coverage, we discussed another two kinds of logic cover-
age in class. Describe these. Also describe the relationship between the three
logic based criteria.



Samle Exam TDA567/DIT082 2014 5

Assignment 2 (Debugging) (12p)

(a) When is a statement B control dependent on a statement A?

(b) In the small Dafny program below, on which statement(s) is/are the statements
in line 9 data dependent? Also state why.

1 method M(n : nat) returns (b : nat){

2 if(n == 0)

3 { return 0; }

4 var i := 1;

5 var a := 0;

6 b := 1;

7 while (i < n)

8 {

9 a, b := b, a+b;

11 i := i +1;

12 }

13 }

(c) On which statements is line 11 backward dependent? Also state why.

(d) The ddMin algorithm computes a minimal failure inducing input sequence. It
relies on having a method test(i) which returns PASS if the input i passes
the test or FAIL if the i causes failure (i.e. bug is exhibited).
Explain what we mean by granularity in the context of the ddMin algorithm.

(e) This question asks you to simulate a run of the ddMin algorithm. At each step,
clearly state what the granularity is, how it was computed and why.
Suppose our input consists of sequences made out of the letters A-Z. Let test
return FAIL whenever the sequence contains two or more occurrences of the
letter Z somewhere in the sequence. The Z’s does not need to be consecutive.
Simulate a run of the ddMin algorithm and compute a minimal failing input
from an initial failing input [Z,B,R,Z,Z,Y,Z,X]. Clearly state what happens
at each step of the algorithm and what the final result is. Correct solutions
without explanation will not be given the full score.



Samle Exam TDA567/DIT082 2014 6

Assignment 3 (Formal Specification) (13p)

Connect Four is a two players game which takes place on a rectangular board placed
vertically between them. One player has yellow tokens and the other red tokens. In
each move, the player drops a token at the top of the board in one of the seven columns;
the token falls down and fills the lowest unoccupied slot. Of course a player cannot
drop a token in a column that is already full (i.e., it already contains six tokens). The
goal is to connect four tokens vertically, horizontally, or diagonally.

We will represent the board by a two-dimensional array, called board. The different
colours are represented by the integers 1 and 2. An empty slot is represented by the
integer 0. Therefore, the above picture corresponds to the array depicted below.

5
4
3
2
1
0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 2 2 0 0 0
0 0 1 2 1 0 0
0 2 1 1 1 2 0

0 1 2 3 4 5 6

The game is implemented in the Dafny class Connect4, see below. Note that the
class is generic towards the dimensions of the board, and so should your specification
be. To simplify your task of specification, we omit the general winning test, and
instead consider a partial winning test, WonHorizontally. The methods Drop and
WonHorizontally are not robust against wrong input. Consequently, the specifications
must exclude wrong inputs, using requires clauses.

Continued on next page!



Samle Exam TDA567/DIT082 2014 7

class Connect4{

// Number of columns.

var width : int;

// Number of rows.

var height : int;

// The game board.

var board : array2<int>;

// The filling level of all columns.

var level : array<int>;

predicate Valid()

reads this, this.level;

{}

method Init(w : int, h : int)

modifies this;

{

width := w;

height := h;

board := new int[w,h];

level := new int[w];

//Initially empty board.

forall(i,j | 0 <= i < width && 0 <= j < height){

board[i,j] := 0;

}

forall(i | 0 <= i < width) {

level[i] := 0;

}

}

method Drop(player : int, column : int)

modifies this.level, this.board;

{}

method WonHorizontally(player : int) returns (won : bool)

{}

}

Continued on next page!



Samle Exam TDA567/DIT082 2014 8

Your task is to enrich the Connect4 class with Dafny specifications. You are not
required to write implementations for Drop andWonHorizontally, only specifications.

Recall that you may access the dimensions of a two-dimensional array in Dafny using
Length0 and Length1.

(a) Complete the body for the predicate Valid. It should ensure board and level

have been initialised, specify what data board and level can contain and
finally also how the different fields depend on each other.

(b) Write a contract specifying the Init function. It should check that everything
is initialised as expected and that legal values have been supplied for w and
h. Furthermore, it should ensure that board and level are freshly allocated
objects.

(c) Write a contract for Drop. It should capture the assumptions that player is
either 1 or 2, and that the column is not yet full. The method places a token of
the player at the lowest free slot in that column, leaving the rest of the board
unchanged.

(d) Write a contract for WonHorizontally. It should capture the assumption that
player is either 1 or 2 and return true if the player has won the game with
four connected tokens in a horizontal line. I.e. if the player has won in some
other way, this method still returns false.



Samle Exam TDA567/DIT082 2014 9

Assignment 4 (Verification and Test Generation) (12p)

method Max(arr : array<int>) returns (max : int)

requires ?

ensures ?

{

// To be completed.

}

(a) Complete the above Dafny program which is supposed to compute the maxi-
mum of an array. In addition to the method body, your answer should state
suitable pre- and post-conditions as well as loop invariants.

(b) Briefly, in concise English, explain what properties a loop invariant for partial
correctness must satisfy.

(c) Briefly, in concise English, explain what total correctness is. What do we
need, in addition to an invariant, to prove total correctness? State such an
expression for the loop in the program above.

(d) When generating tests from specifications, it is normally required that the
generated test inputs satisfy certain parts of the program specification. Which
parts?



Samle Exam TDA567/DIT082 2014 10

Assignment 5 (Verification) (11p)

This question concerns a program with a loop, which computes fibonacci numbers:

function fib(n : nat) : nat

{

if (n==0) then 0 else

if (n==1) then 1 else fib(n-1) + fib(n-2)

}

method Fib(x : nat) returns (res : nat)

ensures res == fib(x);

{

if (x==0) { res := 0; }

var i := 1;

var nxt := 1;

res := 1;

while(i < x)

invariant ?

{

res, nxt := nxt, nxt + res;

i := i+1;

}

}

(a) Give a loop invariant and a loop variant for the loop in the Fib method above.
You may want to use the recursive function provided.

(b) Prove the Fib method correct using the weakest precondition calculus. You
may assume that the Assignment rule works as expected for parallel assign-
ments (i.e. as if we had written it using an intermediate variable).

(total 60p)


