
Exam – Introduction to Functional Programming

TDA555/DIT441 (DIT440), HT-22
Chalmers och Göteborgs Universitet, CSE

Day: 2022-10-26, Time: 14:00-18:00, Place: Johanneberg

Course responsible
Alex Gerdes (031-772 6154). He will visit the exam room once between 15:30 and
16:00, and after that is available by phone.

Allowed aids
An English dictionary.

Grading
The exam consist of two parts: a part with seven small assignments and a part with
two more advanced assignments; there are in total nine assignments.

• To pass the exam (with a 3 or a G) you need to give good enough answers
for five out of the nine assignments. An answer with minor mistakes might
be accepted, but this is at the discretion of the marker. An answer with large
mistakes will be marked as incorrect.

• You do not need to solve the assignments from part II to pass the exam and
you are happy with a 3 or G! You are though encouraged to try the assignments
from part II: they count to pass the exam, and you may get a higher grade.

• For a 4 you need to pass Part I (five out of seven assignments) and one assign-
ment of your choice from Part II.

• For a 5 you need to pass Part I (five out of seven assignments) and both assign-
ments from Part II.

Notes

– Begin each assignment on a new sheet and write your number on it.

– You may write your answers in Swedish and English.

– Excessively complicated answers might be rejected.

– Write legibly! Solutions that are difficult to read are marked as incorrect!

– You can make use of the standard Haskell functions and types given in the attached
list (you have to implement other functions yourself if you want to use them). You
do not have to import standard modules in your solutions. You do not have to
copy any of the code provided.

– Good luck!

1

Part I

1

Given the following definitions:

f x (y:z:zs) = y : x : f x (z:zs)

f _ xs = xs

g x xs = concat (f x xs)

a) What does the expression

g " " ["intro", "func", "prog"]

evaluate to? Write down the intermediate steps of your computation. If the type of
your answer is incorrect then your solution will be considered incorrect. Note that
the concat function concatenates a list of lists into a single list.

b) What are the most general types (type signatures) of f and g?

2

2

Two natural numbers are coprime if the only common divisor is 1. In other words, there
does not exist a number other than 1 that divides both numbers without leaving a remain-
der. For example, the pair of 4 and 9 are coprime. The number 4 has a factor 2, but 9 is not
divisible by 2, and 4 is not divisible by 3, which is a factor of 9. The pair of 6 and 9, for
example, are not coprime, since 3 divides both 6 and 9 without leaving a remainder.

To determine if a pair of numbers is coprime you should calculate their greatest common
divisor (gcd) and check if this is equal to 1. The gcd can be calculated using the Euclidian
algorithm, which works as follows: start with the pair of numbers (x, y) and repeatedly
replace this by (y, x mod y) until the pair is (d, 0), where d is the greatest common divisor.
For example:

gcd(9, 6)→ gcd(6, 9 mod 6)→ gcd(6, 3)→ gcd(3, 6 mod 3)→ gcd(3, 0)

so the gcd of 9 and 6 is 3. Note that the modulo operator (mod) returns the remainder of
an integer division.

Your tasks are:

a) First, write a function that returns the greatest common divisor of two given integers:

gcd :: Int -> Int -> Int

b) Next, use the gcd function to implement the following function that checks if two
numbers are coprime:

coprime :: Int -> Int -> Bool

3

3

Consider the following recursive datatype:

data DTree a

= Decision a

| Question String (DTree a) (DTree a)

deriving (Eq, Show)

which models a decision tree. A decision tree can either be a Decision, where we store an
item of type a denoting what to do when we reach that decision, or a Question where
we store a question (as a string) together with two (sub)trees: one tree in case the answer
to the question is positive, and a second tree if the answer is negative. For example, the
following decision tree determines which mode of transport we should choose:

whatToDo :: DTree String

whatToDo = Question "Is it Raining?" yes no

where

yes = Decision "Take the bus"

no = Question "Is it more the 2km?" (Decision "Cycle") (Decision "Walk")

Another small example is to determine how much money to save:

howMuch :: DTree Int

howMuch = Question "Is the inflation above 2 percent?"

(Question "Do you have a mortgage?" (Decision 1000) (Decision 400))

(Decision 100)

Your task is to implement the higher-order function:

mapDecision :: (a -> b) -> DTree a -> DTree b

that applies a given function to every decision in a tree. For example:

ghci> mapDecision (++ "!!") whatToDo

Question "Is it Raining?" (Decision "Take the bus!!")

(Question "Is it more the 2km?" (Decision "Cycle!!") (Decision "Walk!!"))

4

4

Recall the decision tree data type from the previous assignment:

data DTree a

= Decision a

| Question String (DTree a) (DTree a)

deriving (Eq, Show)

Your task is to define an IO function that asks a user the questions present in the tree based
on a user’s answers, and returns the appropriate decision:

takeDecision :: DTree a -> IO a

The function should print the string stored in a question and read the reply from the user.
If the reply is equal to the string "y" then the first decision tree in the Question constructor
should be taken, otherwise the second decision tree.

The following excerpts show example interactions with the decision trees from the previ-
ous assignment:

ghci> takeDecision whatToDo

Is it Raining? (answer y/n)

> n

Is it more the 2km? (answer y/n)

> y

"Cycle"

and

ghci> takeDecision howMuch

Is the inflation above 2 percent? (answer y/n)

> y

Do you have a mortgage? (answer y/n)

> n

400

Note that the function returns the decision, it does not print it. It is GHCi that displays the
result in the above excerpts.

5

5

Consider the following data type definition that models an electronic billboard:

type Pixel = (Int, Int)

data BillBoard = BB { size :: (Int, Int), actives :: [Pixel] }

A billboard, which can be regarded as a matrix of pixels, consists of its size and a list of
active pixels. The size field of a billboard is a tuple of integers where the first element is
the number of rows, and the second element the number of columns. A pixel is a pair of
integers which denotes its place (row and column) on the billboard. For example, (0, 3)

is found on the first row and fourth column. We use zero-based indexing, that is, index
(0, 0) points to the pixel on the first row and first column.

Using the above data definition we can make an example billboard:

lambda :: BillBoard

lambda = BB (4, 10) [(0,2),(1,3),(2,2),(2,4),(3,1),(3,5)]

which can be textually represented as follows:

..#.......

...#......

..#.#.....

.#...#....

where an active pixel is represented by the character '#', a non-active pixel by a dot '.'.

Your tasks are:

a) Write a function that returns the number of inactive pixels:

inactives :: BillBoard -> Int

b) Define a function that inverts all the pixels in a billboard:

invert :: BillBoard -> BillBoard

All active pixels in an inverted billboard become inactive and all inactive pixels
become active. For example, the following shows the textual representation of
calling invert on lambda:

##.#######

###.######

##.#.#####

#.###.####

6

6

In assignment 2 we introduced the term coprime. We are going define two properties that
all coprime number pairs should have.

Your tasks in this assignment are:

a) Write a property that validates that at least one of the numbers in a coprime pair is
odd:

prop_odd :: (Int, Int) -> Bool

since if the numbers were both even then 2 would be a common divisor, which
makes the pair not coprime.

b) The least common multiple of the numbers in a coprime pair (x, y) is equal to their
product x ∗ y. Implement a property that checks this:

prop_lcm :: (Int, Int) -> Bool

The Prelude contains a function lcm that calculates the least common multiple,
which you may use.

7

In this question you should define a number of data types to model a phone company. A
phone company consists of a list of customers and its VAT1 number. A customer in a
phony company has a name, a phone number, and a particular plan. A plan can either be
a pre-paid2 plan, which stores the amount of minutes left (for making phone calls), or it
can be a subscription3, which stores the amount of minutes left and the amount of data
left (for surfing the web).

1MOMS
2svenska: kontantkort
3svenska: abonnemang

7

Part II

8

The HyperText Markup Language (HTML) is a language for describing documents. All
webpages are written using HTML. Documents written in HTML have a structure that is
determined by the use of tags. We can enclose a particular part of our document within
certain tags, to indicate this structure. To enclose a part of a document in tags, we use
matching open tags and close tags. For example:

• Text enclosed in boldface tags ... indicates that the text should be in
boldface. Here, is the open tag, and is the corresponding close tag.

• Text enclosed in emphasize tags ... indicates that the text should be
emphasized (often using italics).

• Text enclosed in paragraph tags <P> ... </P> indicates that the text forms a para-
graph (often by having an empty line before and after).

(In reality, tags contain more information than just the tag name (such as B, EM, P, etc.), but
for simplicity we do not deal with that here.) Here is an example of HTML code:

Welcome to my website!

<P>

My hobbies are Haskell programming and playing Myst.

</P>

<P>

Thanks for visiting! anna@gmail.com.

<P>

Bye, bye!

</P>

</P>

and here is what it would look like in a browser:

Welcome to my website!

My hobbies are Haskell programming and playing Myst.

Thanks for visiting! anna@gmail.com

Bye, bye!

We can represent HTML documents in Haskell as a list of tags:

type HTML = [Tag]

There are three different kinds of tags: a piece of text, an open tag, and a close tag.

8

data Tag

= Text String

| Open String

| Close String

deriving (Eq, Show)

The example piece of HTML above can be represented by the following Haskell expression:

annasSida :: HTML

annasSida =

[Text "Welcome to my website!"

, Open "P"

, Open "B"

, Text "My hobbies are ", Open "EM", Text "Haskell", Close "EM"

, Text " programming and playing ", Open "EM", Text "Myst", Close "EM"

, Text "."

, Close "B"

, Close "P"

, Open "P"

, Text "Thanks for visiting! ", Open "EM", Text "anna@gmail.com", Close "EM"

, Open "P", Text ". Bye, bye!", Close "P"

, Close "P"

]

Your tasks are:

a) Define a function

render :: HTML -> String

that converts an HTML document to a string containing HTML code. The function
should write out opening and closing tags enclosed in angled brackets. For example:

ghci> toHtml annasSida

"Welcome to my website!<P>My hobbies are Haskell programm..."

The resulting string is truncated to fit on the page, but contains the entire HTML
document and has the same content as the example code on the previous page.

b) Write a function:

checkHtml :: HTML -> Bool

that validates that every open tag has a corresponding close tag. In an HTML
document the tags can be nested (e.g., <P>Hej!</P>), but not intertwined
(<P>Hej!</P>). So, after an open tag the first close tag in the remainder of
the list should match the open tag.

9

9

Consider the following data type that models a small symbolic expression language
with integer literals, addition, and multiplication. In addition, the expression language
also supports a ‘let-expression’, which allows for a local definition that can be used in
(sub)expression. In a ‘let-expression’ you can bind an expression to a variable and use
this variable in another expression. For example: let x = 123 in x + x, which would
evaluate to 246.

type Name = String

data Expr

= Num Int -- Literal integer

| Add Expr Expr -- Addition

| Mul Expr Expr -- Multiplication division

| Let Name Expr Expr -- let x = e1 in e2

| Var Name -- Variable

Using this data type we can define some example expressions:

-- We make 'Expr' an instance of 'Num' for short hand notation

instance Num Expr where

(+) = Add

(*) = Mul

fromInteger = Num . fromInteger

-- Example expressions and their string representation (in comment)

(x, y, z) = (Var "x", Var "y", Var "z")

e1, e2, e3, e4, e5, e6, e7 :: Expr

e1 = (4 + 5) * 2 -- (4 + 5) * 2

e2 = Let "x" 3 (x + x) -- let x = 3 in x + x

e3 = 5 + 4 * x -- 5 + 4 * x

e4 = Let "x" 1 (Let "y" 2 (x + y)) -- let x = 1 in let y = 2 in x + y

e5 = Let "x" (2 * 3) (x * x) + 12 -- let x = (2 * 3) in x * x + 12

e6 = Let "x" 2 (x * Let "x" 4 (x * x)) -- let x = 2 in x * let x = 4 in x * x

e7 = Let "x" 5 (x + y + z) -- let x = 5 in x + y + z

Write a function that evaluates an expression:

eval :: Expr -> Maybe Int

The evaluation may fail in case there is an unbound variable (a variable not bound be a
Let). For example, the evaluation of e6 results in Just 48, whereas the evaluation of e3
results in Nothing because x is not bound. Note that a variable can be shadowed by another
variable, this happens if you have nested ‘let-expressions’ that bind the same variable name.
The evaluation should use the innermost binding. For example, in e6 in the subexpression
(x * x), the variable x refers to 4 (the innermost binding of x) and not 2.

10

{
-

T
h
i
s

i
s

a

l
i
s
t

o
f

s
e
l
e
c
t
e
d

f
u
n
c
t
i
o
n
s

f
r
o
m

t
h
e

s
t
a
n
d
a
r
d

H
a
s
k
e
l
l

m
o
d
u
l
e
s
:

P
r
e
l
u
d
e

D
a
t
a
.
L
i
s
t

D
a
t
a
.
M
a
y
b
e

D
a
t
a
.
C
h
a
r

C
o
n
t
r
o
l
.
M
o
n
a
d

-
}

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

*

S
t
a
n
d
a
r
d

t
y
p
e

c
l
a
s
s
e
s

cl
as

s
Sh

ow
 a

 w
he

re

sh
ow

 :
:

a
->

 S
tr

in
g

cl
as

s
Re

ad
 a

 w
he

re

re
ad

 :
:

St
ri

ng
 -

>
a

cl
as

s
Eq

 a
 w

he
re

(=

=)
,

(/
=)

 :
:

a
->

 a
 -
>

Bo
ol

cl
as

s
Eq

 a
 =

>
Or

d
a
wh

er
e

(<

),
 (

<=
),

 (
>=

),
 (

>)
 :
:

a
->

 a
 -

>
Bo

ol

ma
x,

 m
in

 :
:

a
->

 a
 -

>
a

cl
as

s
(E

q
a,

 S
ho

w
a)

 =
>
Nu

m
a

wh
er

e

(+
),

 (
-)

,
(*

)

 :
:

a
->

 a
 -

>
a

ne

ga
te

 :
:

a
->

 a

ab
s,

 s
ig

nu
m

 :
:

a
->

 a

fr
om

In
te

ge
r

 :
:

In
te

ge
r

->
 a

cl
as

s
(N

um
 a

,
Or

d
a)

 =
>
Re

al
 a

 w
he

re

to
Ra

ti
on

al

 :
:

 a
 -

>
Ra

ti
on

al

cl
as

s
(R

ea
l

a,
 E

nu
m

a)
 =
>

In
te

gr
al

 a
 w
he

re

qu
ot

,
re

m

 :
:

a
->

 a
 -

>
a

di
v,

 m
od

 :
:

a
->

 a
 -

>
a

to

In
te

ge
r

 :
:

a
->

 I
nt

eg
er

cl
as

s
Nu

m
a

=>
 F

ra
ct

io
na
l

a
wh

er
e

(/

)

 :
:

a
->

 a
 -

>
a

fr

om
Ra

ti
on

al

 :
:

Ra
ti

on
al

 -
>

a

cl
as

s
(F

ra
ct

io
na

l
a)

 =
>
Fl

oa
ti

ng
 a

 w
he

re

ex
p,

 l
og

,
sq

rt

::

 a
 -

>
a

si

n,
 c

os
,

ta
n

::

 a
 -

>
a

cl
as

s
(R

ea
l

a,
 F

ra
ct

io
na
l

a)
 =

>
Re

al
Fr

ac
 a

 w
he

re

tr
un

ca
te

,
ro

un
d
::

 (
In

te
gr

al
 b

)
=>

 a
 -

>
b

ce

il
in

g,
 f

lo
or

::

 (
In

te
gr

al
 b

)
=>

 a
 -

>
b

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

*

N
u
m
e
r
i
c
a
l

f
u
n
c
t
i
o
n
s

ev
en

,
od

d

 :
:

In
te

gr
al

 a
 =

>
a

->
 B

oo
l

ev
en

 n

 =
 n

 ‘
re

m‘
 2

 =
=

0
od

d

 =

 n
ot

 .
 e

ve
n

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

*

M
o
n
a
d
i
c

f
u
n
c
t
i
o
n
s

se
qu

en
ce

 :
:

Mo
na

d
m
=>

 [
m

a]
 -

>
m

[a
]

se
qu

en
ce

 =
 f

ol
dr

 m
co

ns
 (

re
tu

rn
 [

])

wh
er

e
mc
on

s
p

q
=

do
 x
 <

-
p

 x

s
<-

 q

 r

et
ur

n
(x

:x
s)

se
qu

en
ce

_

 :
:

Mo
na

d
m
=>

 [
m

a]
 -

>
m

()

se
qu

en
ce

_
xs

 =
 d

o
se

qu
en

ce
 x

s

re
tu

rn
 (

)

li
ft

M

::

 M
on

ad
 m

 =
>

(a
 -

>
b)

 -
>

m
a

->
 m

 b
li

ft
M

f
m1

 =

 d
o

x1
 <

-
m1

re
tu

rn
 (

f
x1

)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

*

F
u
n
c
t
i
o
n
s

o
n

f
u
n
c
t
i
o
n
s

id

 :

:
a

->
 a

id
 x

 =

 x

co
ns

t

 :

:
a

->
 b

 -
>

a
co

ns
t

x
_

 =
 x

(.
)

 :

:
(b

 -
>

c)
 -

>
(a

 -
>

b)
 -

>
a

->
 c

f
.

g

 =

 \
 x

 -
>

f
(g

 x
)

fl
ip

 :

:
(a

 -
>

b
->

 c
)

->
 b

 -
>

a
->

 c
fl

ip
 f

 x
 y

 =
 f

 y
 x

($
)

 :

:
(a

 -
>

b)
 -

>
a

->
 b

f
$

x

 =

 f
 x

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

*

F
u
n
c
t
i
o
n
s

o
n

B
o
o
l
s

da
ta
 B

oo
l

=
Fa

ls
e

|
Tr

ue

(&
&)

,
(|

|)

 :
:

Bo
ol

 -
>

Bo
ol

 -
>

Bo
ol

Tr
ue

&&

 x

 =
 x

Fa
ls

e
&&

 _

 =
 F

al
se

Tr
ue

||

 _

 =
 T

ru
e

Fa
ls

e
||

 x

 =
 x

no
t

 :
:

Bo
ol

 -
>

Bo
ol

no
t

Tr
ue

 =
 F

al
se

no
t

Fa
ls

e

 =
 T

ru
e

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

*

F
u
n
c
t
i
o
n
s

o
n

M
a
y
b
e

da
ta
 M

ay
be

 a
 =

 N
ot

hi
ng

 |
 J

us
t

a

is
Ju

st
,i

sN
ot

hi
ng

 :
:

Ma
yb

e
a

->
 B

oo
l

is
Ju

st
 (

Ju
st

 a
)

 =

Tr

ue
is

Ju
st

 N
ot

hi
ng

 =

Fa
ls

e

is
No

th
in

g

 =

no

t
.

is
Ju

st

fr
om

Ju
st

 :
:

Ma
yb

e
a

->
 a

fr
om

Ju
st

 (
Ju

st
 a

)

 =

a

ma
yb

eT
oL

is
t

 :
:

Ma
yb

e
a

->
 [

a]
ma

yb
eT

oL
is

t
No

th
in

g

 =

[]
ma

yb
eT

oL
is

t
(J

us
t

a)

 =

[a
]

li
st

To
Ma

yb
e

 :
:

[a
]

->
 M

ay
be

 a
li

st
To

Ma
yb

e
[]

 =

No
th

in
g

li
st

To
Ma

yb
e

(a
:_

)

 =

Ju

st
 a

 ca
tM

ay
be

s

 :
:

[M
ay

be
 a

]
->

 [
a]

ca
tM

ay
be

s
ls

 =

 [
x

|
Ju

st
 x

 <
-

ls
]

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

*

F
u
n
c
t
i
o
n
s

o
n

p
a
i
r
s

fs
t

 :
:

(a
,b

)
->

 a
fs

t
(x

,y
)

 =

x

sn
d

 :
:

(a
,b

)
->

 b
sn

d
(x

,y
)

 =

y

sw
ap

 :
:

(a
,b

)
->

 (
b,

a)
sw

ap
 (

a,
b)

 =

 (
b,

a)

cu
rr

y
 :

:
((

a,
 b

)
->

 c
)

->
 a

 -
>

b
->

 c
cu

rr
y

f
x

y

 =

f

(x
,

y)

un
cu

rr
y
::

 (
a

->
 b

 -
>

c)
 -

>
((

a,
 b

)
->

 c
)

un
cu

rr
y

f
p

 =

f

(f
st

 p
)

(s
nd

 p
)

-
-

*

F
u
n
c
t
i
o
n
s

o
n

l
i
s
t
s

ma
p

::
 (
a
->
 b
)
->
 [
a]
 -
>
[b
]

ma
p
f
xs
 =
 [
 f
 x
 |
 x
 <
-
xs
]

(+
+)
 :

:
[a
]
->
 [
a]
 -
>
[a
]

xs
 +
+
ys
 =
 f
ol
dr
 (
:)
 y
s
xs

fi
lt
er
 :

:
(a
 -
>
Bo
ol
)
->
 [
a]
 -
>
[a
]

fi
lt
er
 p
 x
s
=
[
x
|
x
<-
 x
s,
 p
 x
]

co
nc
at
 :

:
[[
a]
]
->
 [
a]

co
nc
at
 x
ss
 =
 f
ol
dr
 (
++
)
[]
 x
ss

co
nc
at
Ma
p

::
 (
a
->
 [
b]
)
->
 [
a]
 -
>
[b
]

co
nc
at
Ma
p
f
=
co
nc
at
 .
 m
ap
 f

he
ad
,
la
st

 :

:
[a
]
->
 a

he
ad
 (
x:

_)

 =
 x

la
st
 [
x]

 =
 x

la
st
 (

_:
xs
)

 =
 l
as
t
xs

ta
il
,
in
it

 :

:
[a
]
->
 [
a]

ta
il
 (

_:
xs
)

 =
 x
s

in
it
 [
x]

 =
 [
]

in
it
 (
x:
xs
)

 =
 x
 :
 i
ni
t
xs

nu
ll

 :

:
[a
]
->
 B
oo
l

nu
ll
 [
]

 =
 T
ru
e

nu
ll
 (

_:
_)

 =
 F
al
se

le
ng
th

 :

:
[a
]
->
 I
nt

le
ng
th

 =
 f
ol
dr
 (
co
ns
t
(1
+)
)
0

(!
!)

 :

:
[a
]
->
 I
nt
 -
>
a

(x
:_

)
 !
!
0

 =
 x

(_
:x
s)
 !

!
n

 =
 x
s
!!
 (
n-
1)

fo
ld
r

 :

:
(a
 -
>
b
->
 b
)
->
 b
 -
>
[a
]
->
 b

fo
ld
r
f
z
[]

 =

z

fo
ld
r
f
z
(x
:x
s)
 =

f
x
(f
ol
dr
 f
 z
 x
s)

fo
ld
l

 :

:
(a
 -
>
b
->
 a
)
->
 a
 -
>
[b
]
->
 a

fo
ld
l
f
z
[]

 =

z

fo
ld
l
f
z
(x
:x
s)
 =

fo
ld
l
f
(f
 z
 x
)
xs

it
er
at
e

 :

:
(a
 -
>
a)
 -
>
a
->
 [
a]

it
er
at
e
f
x

 =

x
:
it
er
at
e
f
(f
 x
)

re
pe
at

 :

:
a
->
 [
a]

re
pe
at
 x

 =

xs
 w

he
re

 x
s
=
x:
xs

re
pl
ic
at
e

 :

:
In
t
->
 a
 -
>
[a
]

re
pl
ic
at
e
n
x

 =

ta
ke
 n
 (
re
pe
at
 x
)

cy
cl
e

 :

:
[a
]
->
 [
a]

cy
cl
e
[]

 =

er
ro
r

"P
re
lu
de
.c
yc
le
:
em
pt
y
li
st
"

cy
cl
e
xs

 =

xs
’

wh
er
e

xs
’
=
xs
 +
+
xs
’

ta
il
s

 :

:
[a
]
->
 [
[a
]]

ta
il
s
xs

 =

xs
 :
 c

as
e

xs
 o

f

 [
]

 -
>
[]

 _

 :
 x
s’
 -
>
ta
il
s
xs
’

ta
ke

,
dr

op

 :
:

In
t

->
 [

a]
 -

>
[a

]
ta

ke
 n

 _

|

n
<=

 0
 =

[]
ta

ke
 _
 [

]

 =

[]
ta

ke
 n

 (
x:

xs
)

 =

x
:

ta
ke

 (
n-

1)
 x

s

dr
op

 n
 x

s

|

n
<=

 0
 =

xs

dr
op

 _
 [

]

 =

[]
dr

op
 n

 (
_:

xs
)

 =

dr
op

 (
n-

1)
 x

s

sp
li

tA
t

 :
:

In
t

->
 [

a]
 -

>
([

a]
,[

a]
)

sp
li

tA
t

n
xs

 =

(t

ak
e

n
xs

,
dr

op
 n

 x
s)

ta
ke

Wh
il

e,
 d

ro
pW

hi
le

 :
:

(a
 -

>
Bo

ol
)

->
 [

a]
 -

>
[a

]
ta

ke
Wh

il
e

p
[]

=

 [
]

ta
ke

Wh
il

e
p

(x
:x

s)

|
p

x

=
 x

 :
 t

ak
eW

hi
le

 p
 x

s

|

ot
he

rw
is

e
=

 [
]

dr
op

Wh
il

e
p

[]

=
 [

]
dr

op
Wh

il
e

p
xs

@(
x:

xs
’)

|
p

x

=
 d

ro
pW

hi
le

 p
 x

s’

|

ot
he

rw
is

e
=

 x
s

sp
an

 :
:

(a
 -

>
Bo

ol
)

->
 [
a]

 -
>

([
a]

,
[a

])
sp

an
 p

 a
s

=
(t

ak
eW

hi
le

 p
 a

s,
 d

ro
pW

hi
le

 p
 a

s)

li
ne

s,
 w

or
ds

 :
:

St
ri

ng
 -

>
[S

tr
in

g]
-
-

l
i
n
e
s

"
a
p
a
\
n
b
e
p
a
\
n
c
e
p
a
\
n
"

-
-

=
=

[
"
a
p
a
"
,
"
b
e
p
a
"
,
"
c
e
p
a
"
]

-
-

w
o
r
d
s

"
a
p
a

b
e
p
a
\
n

c
e
p
a
"

-
-

=
=

[
"
a
p
a
"
,
"
b
e
p
a
"
,
"
c
e
p
a
"
]

un
li

ne
s,

 u
nw

or
ds

 :
:

[S
tr

in
g]

 -
>

St
ri

ng
-
-

u
n
l
i
n
e
s

[
"
a
p
a
"
,
"
b
e
p
a
"
,
"
c
e
p
a
"
]

-
-

=
=

"
a
p
a
\
n
b
e
p
a
\
n
c
e
p
a
\
n
"

-
-

u
n
w
o
r
d
s

[
"
a
p
a
"
,
"
b
e
p
a
"
,
"
c
e
p
a
"
]

-
-

=
=

"
a
p
a

b
e
p
a

c
e
p
a
"

re
ve

rs
e

 :
:

[a
]

->
 [

a]
re

ve
rs

e

 =

fo

ld
l

(f
li

p
(:

))
 [

]

an
d,

 o
r

 :
:

[B
oo

l]
 -

>
Bo

ol
an

d

 =

fo

ld
r

(&
&)

 T
ru

e
or

 =

fo

ld
r

(|
|)

 F
al

se

an
y,

 a
ll

 :
:

(a
 -

>
Bo

ol
)

->
 [

a]
 -

>
Bo

ol
an

y
p

 =

or

 .
 m

ap
 p

al
l

p

 =

an
d

.
ma

p
p

el
em

,
no

tE
le

m

 :
:

(E
q

a)
 =

>
a

->
 [

a]
 -

>
Bo

ol
el

em
 x

 =

an

y
(=

=
x)

no
tE

le
m

x

 =

al
l

(/
=

x)

lo
ok

up

::

 (
Eq

 a
)

=>
 a

 -
>

[(
a,

b)
]

->
 M

ay
be

 b
lo

ok
up

 k
ey

 [
]

 =

No

th
in

g
lo

ok
up

 k
ey

 (
(x

,y
):

xy
s)

|
ke

y
==

 x

 =

Ju
st

 y

|

ot
he

rw
is

e
 =

lo

ok
up

 k
ey

 x
ys

su
m,

 p
ro

du
ct

 :
:

(N
um

 a
)

=>
 [

a]
 -

>
a

su
m

 =

fo
ld

l
(+

)
0

pr

od
uc

t

 =

fo

ld
l

(*
)

1

ma
xi

mu
m,

 m
in

im
um

 :
:

(O
rd

 a
)

=>
 [

a]
 -

>
a

ma
xi

mu
m

[]
 =

 e
rr

or
 "
Pr

el
ud

e.
ma

xi
mu

m:
 e

mp
ty

 l
is

t"
ma

xi
mu

m
(x

:x
s)

 =
 f

ol
dl

 m
ax

 x
 x

s

mi
ni

mu
m

[]
 =

 e
rr

or
 "
Pr

el
ud

e.
mi

ni
mu

m:
 e

mp
ty

 l
is

t"
mi

ni
mu

m
(x

:x
s)

 =
 f

ol
dl

 m
in

 x
 x

s

zi
p

 :
:

[a
]

->
 [

b]
 -

>
[(

a,
b)

]
zi

p

 =

zi

pW
it

h
(,

)

zi
pW

it
h

 :
:

(a
->

b-
>c

)
->

 [
a]

->
[b

]-
>[

c]
zi

pW
it

h
z

(a
:a

s)
 (

b:
bs

)

 =

z

a
b

:
zi

pW
it

h
z

as
 b

s
zi

pW
it

h
_
_
_

 =

[]

un
zi

p

 :
:

[(
a,

b)
]

->
 (

[a
],

[b
])

un
zi

p

 =

fo

ld
r

(\
(a

,b
)

˜(
as

,b
s)

 -
>

(a
:a

s,
b:

bs
))

 (
[]

,[
])

nu
b

 :
:

Eq
 a

 =
>

[a
]

->
 [

a]
nu

b
[]

 =

 [
]

nu
b

(x
:x

s)

 =

 x

 :
 n

ub
 [

 y
 |

 y
 <

-
xs

,
x

/=
 y

]

de
le

te

 :
:

Eq
 a

 =
>

a
->

 [
a]

 -
>

[a
]

de
le

te
 y

 [
]

 =
 [

]
de

le
te

 y
 (

x:
xs

)
 =

 i
f
x

==
 y

 t
he

n
xs

 e
ls

e
x

:
de

le
te

 y
 x

s

(\
\)

 :
:

Eq
 a

 =
>

[a
]

->
 [

a]
 -

>
[a

]
(\

\)

 =

 f
ol

dl
 (

fl
ip

 d
el

et
e)

un
io

n

 :
:

Eq
 a

 =
>

[a
]

->
 [

a]
 -

>
[a

]
un

io
n

xs
 y

s

 =

 x
s

++
 (

ys
 \

\
xs

)

in
te

rs
ec

t

 :
:

Eq
 a

 =
>

[a
]

->
 [

a]
 -

>
[a

]
in

te
rs

ec
t

xs
 y

s
 =

 [
 x

 |
 x

 <
-

xs
,

x
‘e

le
m‘

 y
s

]

in
te

rs
pe

rs
e

 :
:

a
->

 [
a]

 -
>

[a
]

-
-

i
n
t
e
r
s
p
e
r
s
e

0

[
1
,
2
,
3
,
4
]

=
=

[
1
,
0
,
2
,
0
,
3
,
0
,
4
]

tr
an

sp
os

e

 :
:

[[
a]

]
->

 [
[a

]]
-
-

t
r
a
n
s
p
o
s
e

[
[
1
,
2
,
3
]
,
[
4
,
5
,
6
]
]

-
-

=
=

[
[
1
,
4
]
,
[
2
,
5
]
,
[
3
,
6
]
]

pa
rt

it
io

n

::

 (
a

->
 B

oo
l)

 -
>

[a
]

->
 (

[a
],

[a
])

pa
rt

it
io

n
p

xs
 =

(f

il
te

r
p

xs
,

fi
lt

er
 (

no
t

.
p)

 x
s)

gr
ou

p

 :
:

Eq
 a

 =
>

[a
]

->
 [

[a
]]

gr
ou

p
=

gr
ou

pB
y

(=
=)

gr
ou

pB
y
::

 (
a

->
 a

 -
>

Bo
ol

)
->

 [
a]

 -
>

[[
a]

]
gr

ou
pB

y
_

 [
]

=
 [

]
gr

ou
pB

y
eq

 (
x:

xs
)

=
 (

x:
ys

)
:

gr
ou

pB
y

eq
 z

s

wh

er
e

(y
s,

zs
)

=
sp

an
 (

eq
 x

)
xs

is
Pr

ef
ix

Of
 :
:

Eq
 a

 =
>

[a
]

->
 [

a]
 -

>
Bo

ol
is

Pr
ef

ix
Of

 [
]

_

 =

Tr
ue

is
Pr

ef
ix

Of
 _

[]

 =

Fa

ls
e

is
Pr

ef
ix

Of
 (

x:
xs

)
(y

:y
s)

 =

x
==

 y

&&
 i

sP
re

fi
xO

f
xs

 y
s

is
Su

ff
ix

Of
 :
:

Eq
 a

 =
>

[a
]

->
 [

a]
 -

>
Bo

ol
is

Su
ff

ix
Of

 x
 y

 =
 r

ev
er

se
 x

‘i

sP
re

fi
xO

f‘
 r

ev
er

se
 y

so
rt

::
 (
Or
d
a)
 =
>
[a
]
->
 [
a]

so
rt

=
fo
ld
r
in
se
rt
 [
]

in
se
rt

::
 (
Or
d
a)
 =
>
a
->
 [
a]
 -
>
[a
]

in
se
rt
 x
 [
]

=
[x
]

in
se
rt
 x
 (
y:
xs
)

=

if
 x
 <
=
y

th
en

 x
:y
:x
s

el
se

 y
:i
ns
er
t
x
xs

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

*

F
u
n
c
t
i
o
n
s

o
n

C
h
a
r

ty
pe

 S
tr
in
g
=
[C
ha
r]

to
Up
pe
r,
 t
oL
ow
er
 :

:
Ch
ar
 -
>
Ch
ar

-
-

t
o
U
p
p
e
r

’
a
’

=
=

’
A
’

-
-

t
o
L
o
w
e
r

’
Z
’

=
=

’
z
’

di
gi
tT
oI
nt
 :

:
Ch
ar
 -
>
In
t

-
-

d
i
g
i
t
T
o
I
n
t

’
8
’

=
=

8

in
tT
oD
ig
it
 :

:
In
t
->
 C
ha
r

-
-

i
n
t
T
o
D
i
g
i
t

3

=
=

’
3
’

or
d

::
 C
ha
r
->
 I
nt

ch
r

::
 I
nt

->
 C
ha
r

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

*

U
s
e
f
u
l

f
u
n
c
t
i
o
n
s

f
r
o
m

T
e
s
t
.
Q
u
i
c
k
C
h
e
c
k

ar
bi
tr
ar
y

::
 A
rb
it
ra
ry
 a
 =
>
Ge
n
a

-
-

t
h
e

g
e
n
e
r
a
t
o
r

f
o
r

v
a
l
u
e
s

o
f

a

t
y
p
e

-
-

i
n

c
l
a
s
s

A
r
b
i
t
r
a
r
y
,

u
s
e
d

b
y

q
u
i
c
k
C
h
e
c
k

ch
oo
se
 :

:
Ra
nd
om
 a
 =
>
(a
,
a)
 -
>
Ge
n
a

-
-

G
e
n
e
r
a
t
e
s

a

r
a
n
d
o
m

e
l
e
m
e
n
t

i
n

t
h
e

g
i
v
e
n

-
-

i
n
c
l
u
s
i
v
e

r
a
n
g
e
.

on
eo
f

::
 [
Ge
n
a]
 -
>
Ge
n
a

-
-

R
a
n
d
o
m
l
y

u
s
e
s

o
n
e

o
f

t
h
e

g
i
v
e
n

g
e
n
e
r
a
t
o
r
s

fr
eq
ue
nc
y

::
 [
(I
nt
,
Ge
n
a)
]
->
 G
en
 a

-
-

C
h
o
o
s
e
s

f
r
o
m

l
i
s
t

o
f

g
e
n
e
r
a
t
o
r
s

w
i
t
h

-
-

w
e
i
g
h
t
e
d

r
a
n
d
o
m

d
i
s
t
r
i
b
u
t
i
o
n
.

el
em
en
ts
 :

:
[a
]
->
 G
en
 a

-
-

G
e
n
e
r
a
t
e
s

o
n
e

o
f

t
h
e

g
i
v
e
n

v
a
l
u
e
s
.

li
st
Of
 :

:
Ge
n
a
->
 G
en
 [
a]

-
-

G
e
n
e
r
a
t
e
s

a

l
i
s
t

o
f

r
a
n
d
o
m

l
e
n
g
t
h
.

ve
ct
or
Of
 :

:
In
t
->
 G
en
 a
 -
>
Ge
n
[a
]

-
-

G
e
n
e
r
a
t
e
s

a

l
i
s
t

o
f

t
h
e

g
i
v
e
n

l
e
n
g
t
h
.

si
ze
d

::
 (
In
t
->
 G
en
 a
)
->
 G
en
 a

-
-

c
o
n
s
t
r
u
c
t

g
e
n
e
r
a
t
o
r
s

t
h
a
t

d
e
p
e
n
d

o
n

-
-

t
h
e

s
i
z
e

p
a
r
a
m
e
t
e
r
.

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

*

U
s
e
f
u
l

I
O

f
u
n
c
t
i
o
n

pu
tS
tr
,
pu
tS
tr
Ln

::
 S
tr
in
g
->
 I
O
()

ge
tL
in
e

::
 I
O
St
ri
ng

ty
pe

 F
il
eP
at
h
=
St
ri
ng

re
ad
Fi
le

 :

:
Fi
le
Pa
th
 -
>
IO
 S
tr
in
g

wr
it
eF
il
e

 :

:
Fi
le
Pa
th
 -
>
St
ri
ng
 -
>
IO
 (
)

	
	
	
	
	
	
	
	
	

