
Re-exam – Introduction to Functional Programming

TDA555/DIT440, HT-21
Chalmers och Göteborgs Universitet, CSE

Day: 2022-01-03, Time: 14:00-18:00, Place: HB1 and HB3, Johanneberg

Course responsible
Alex Gerdes (031-772 6154). He will visit the exam room once between 15:00 and
15:30, and after that is available by phone.

Allowed aids
An English dictionary.

Grading
The exam consist of two parts: a part with seven small assignments and a part with
two more advanced assignments; in total there are nine assignments.

• To pass the exam (with a 3 or a G) you need to give good enough answers
for five out of the nine assignments. An answer with minor mistakes might
be accepted, but this is at the discretion of the marker. An answer with large
mistakes will be marked as incorrect.

• You do not need to solve the assignments from part II to pass the exam and
you are happy with a 3 or G! You are though encouraged to try the assignments
from part II: they count to pass the exam, and you may get a higher grade.

• For a 4 you need to pass Part I (five out of seven assignments) and one assign-
ment of your choice from Part II.

• For a 5 you need to pass Part I (five out of seven assignments) and both assign-
ments from Part II.

Notes

– Begin each assignment on a new sheet and write your number on it.

– You may write your answers in Swedish and English.

– Excessively complicated answers might be rejected.

– Write legibly! Solutions that are difficult to read are marked as incorrect!

– You can make use of the standard Haskell functions and types given in the attached
list (you have to implement other functions yourself if you want to use them). You
do not have to import standard modules in your solutions. You do not have to
copy any of the code provided.

– Good luck!
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Part I

1

Given the following definitions:

add (a, b, c) = a + b + c

combine (x:y:z:zs) = (x, y, z) : combine (y:z:zs)

combine _ = []

a) What does the expression map add (combine [3,2,1,-3,5]) evaluate to? Write
down the intermediate steps of your computation. If the type of your answer is
incorrect then your solution will be considered incorrect.

b) What are the types (type signatures) of add and combine?

2

In this assignment you are going to define an own implementation of the square root
function. You need to implement a function approxSqrt that can approximate

√
x for any

value x.

Consider the following two facts about the square root:

1. if y is a good approximation of
√

x then
y+ x

y
2 is a better approximation,

2. the value 1 is an approximation of
√

x (but not so good).

We will say that the approximation of
√

x is good enough when y2 is close to x. More
precisely, when |y2 − x| is at most some given threshold.

a) Use the above two facts to implement a function:

approxSqrt :: Double -> Double -> Double

using guards such that approxSqrt eps x returns a value that is a good enough
with respect to the given threshold eps. For example:

ghci> approxSqrt 0.001 5

2.2360688956433634

Hint: use a recursive helper function.

b) Maybe we don’t know in advance yet when the approximation is good enough,
and instead we just want a list of ever more precise approximations of

√
x. Write a

function:

approxSqrts :: Double -> [Double]

that produces such a list.
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3

Consider the Prelude function iterate:

iterate :: (a -> a) -> a -> [a]

iterate f x = let y = f x in y : iterate f y

which applies a function f repeatedly starting with the initial value x and returning the
results of each application in an infinite list. For example:

ghci> take 10 (iterate (* 2) 1)

[1,2,4,8,16,32,64,128,256,512]

We want to create some useful variations on this function.

a) Write a function:

iterateN n f x = ...

that applies the function f a given number (n) of times, starting with the value x. For
example:

ghci> iterateN 3 (*2) 1

8

You must define the iterateN function using explicit recursion (on n) and may not
use the original iterate function.

b) Implement a function:

iterateWhile p f x = ...

that applies the given function f repeatedly while the predicate p (a function return-
ing a boolean value) still holds. The iteration of function applications starts on the
value x. For example:

> iterateWhile (< 100) (* 2) 1

128

Again, you are not allowed to use the original iterate function.

c) Give the types (type signatures) for iterateN and iterateWhile.
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Consider the following data type definition that models an electronic billboard:

type Pixel = (Int, Int)

data BillBoard = BB { size :: (Int, Int), actives :: [Pixel] }

A billboard, which can be regarded as a matrix of pixels, consists of its size and a list of
active pixels. The size field of a billboard is a tuple of integers where the first element is
the number of rows, and the second element the number of columns. A pixel is a pair of
integers which denotes its place (row and column) on the billboard. For example, (0, 3)

is found on the first row and fourth column. We use zero-based indexing, that is, index
(0, 0) points to the pixel on the first row and first column.

Using the above data definition we can make an example billboard:

lambda :: BillBoard

lambda = BB (4, 10) [(3,1),(2,2),(1,3),(0,4),(0,5),(2,4),(3,5),(4,6)]

Your task is to write a Show instance for the BillBoard data type, such that the billboard is
displayed as a matrix of pixels. For example:

ghci> putStr (show lambda)

....##....

...#......

..#.#.....

.#...#....

An active pixel is represented by the character '#' and non-active pixels by a dot '.'.

Hint: use a nested list comprehension and define a help function for converting a pixel to
a character.
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Recall the BillBoard data type from the previous assignment:

type Pixel = (Int, Int)

data BillBoard = BB { size :: (Int, Int), actives :: [Pixel] }

We want to let a user to create a billboard of a specific size. You are going to define a
function that first asks a user for the number of rows and number of columns. The function
then creates an empty billboard (i.e., no active pixels) of the specified size, prints the empty
billboard, and finally returns the newly created billboard.

Write the function above with the following type signature:

createBillBoard :: IO BillBoard

The following excerpt shows an example interaction:

ghci> bb <- createBillBoard

Number of rows?

> 2

Number of columns?

> 4

Created the following billboard:

....

....

You may assume a correct Show instance for the data type BillBoard, even if you have not
implemented it. You can do this assignment independent from the other assignments.

6

The function filter from the Prelude takes a predicate and list as arguments and filters
all elements from the list for which the predicate does not hold. In other words, the filter
function returns the elements from an input list for which a given predicate holds. For
example:

ghci> filter even [1..10]

[2,4,6,8,10]

Your task is to test the implementation of the filter function using QuickCheck for a
given predicate (i.e., the properties will take a predicate as argument):

1. Write a property that checks that the result list cannot be longer than the input list.

2. Write a property that verifies that all elements in the result list satisfy the given
predicate.
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A URI (Uniform Resource Identifier) can be used to identify a particular, often electronic,
resource. A URI consists of the following parts:

• a scheme, which can be one of the following: http, https, ldap, mailto, ftp or news,

• an authority, which in turn consists of the following components:

– an optional user name,

– a host name,

– an optional port number,

• an optional path, which is a sequence of segments, where a segment is a string,

• an optional query, which is a collection of key-value pairs,

• and finally, an optional fragment, which is a string.

All non-optional parts are mandatory and need to be specified when constructing a URI.
The next figure shows a number of example URIs:

Figure 1: Example URIs (source: Wikipedia)

Your task is to define a collection of data types (and/or type synonyms) that models a URI
and all its components as precisely as possible.
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Part II

8

We have a radio-controlled car that accepts four different commands: forward, backward,
turn left, and turn right. When the car turns left or right, it always turns exactly 90 degrees.
Your assignment is to write a computer simulator for the car’s movement.

We can model the four commands as a data type:

data Command

= Forward Int

| Backward Int

| TurnLeft

| TurnRight

The integer argument to Forward and Backward denotes the distance the car should drive
in the current direction.

Implement a function:

destination :: [Command] -> (Int, Int)

that, given a list of commands, computes the position of the car after following these
commands. The original position of the car is (x, y) == (0,0), and it is facing ”upwards”
in the sense that going forward from the start position will increase its y position.

For example:

ghci> destination [Forward 20, Backward 10, TurnRight, Forward 100]

(100,10)

ghci> destination [Forward 20, Backward 5, TurnLeft, Forward 100]

(-100,15)

9

Consider the following data types that model a small expression language with integer
and boolean literals, addition, and multiplication. In addition, the expression language
also supports a comparison operator (greater than) and an ‘if-then-else’ expression, which
takes a condition (which is also an expression) and two subexpressions that model the
‘then’ and ‘else’ branch respectively.

data Expr

= Lit Literal -- Literal, either integer or boolean

| Add Expr Expr -- Addition

| Mul Expr Expr -- Multiplication

| Gth Expr Expr -- Comparison operator

| If Expr Expr Expr -- if-then-else
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data Literal

= N Int -- Integer literal

| B Bool -- Boolean literal

Using these data types we can define some example expressions:

-- Smart constructor for integers

num :: Int -> Expr

num = Lit . N

-- Smart constructor for booleans

bool :: Bool -> Expr

bool = Lit . B

-- Example expressions

e1, e2 :: Expr

e1 = (num 4 `Add` num 5) `Mul` num 2 -- (4 + 5) * 2

e2 = If (e1 `Gth` (num 4)) (num 3) (num 4 `Add` num 1) -- if e1 > 4 then 3 else 4 + 1

The above examples are well-formed, which means that they don’t contain any type errors
and we can evaluate these expressions and get a proper result. The expression language
model also allows for ill-formed expressions, for example:

e3_bad, e4_bad, e5_bad, e6_bad :: Expr

e3_bad = num 42 `Add` bool False -- 42 + False

e4_bad = If e2 (num 3) (num 4) -- if e2 then 3 else 4

e5_bad = If (num 4 `Gth` num 2) (num 3) (bool True) -- if 4 > 2 then 3 else True

e6_bad = If (bool False) (num 42) (num 3 `Mul` bool True) -- if False then 42 else 3 * True

These expressions contain so-called type errors. For example, expression e3_bad adds an
integer to a boolean value; in e4_bad the condition is of integer type where it should be a
boolean; e5_bad has different types in the then and else branches; and finally in e6_bad

we multiply an integer with a boolean (3 * True).

Your task is to write a type check function with the following type:

typecheck :: Expr -> Bool

This function checks if the expression is type correct. If the given expression contains a
type error it will return False otherwise it will return True.
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