Re-exam — Introduction to Functional Programming

TDAS555/DIT440, HT-21
Chalmers och Goéteborgs Universitet, CSE

Day: 2022-01-03, Time: 14:00-18:00, Place: HB1 and HB3, Johanneberg

Course responsible
Alex Gerdes (031-772 6154). He will visit the exam room once between 15:00 and
15:30, and after that is available by phone.

Allowed aids
An English dictionary.

Grading
The exam consist of two parts: a part with seven small assignments and a part with
two more advanced assignments; in total there are nine assignments.

e To pass the exam (with a 3 or a G) you need to give good enough answers
for five out of the nine assignments. An answer with minor mistakes might
be accepted, but this is at the discretion of the marker. An answer with large
mistakes will be marked as incorrect.

e You do not need to solve the assignments from part II to pass the exam and
you are happy with a 3 or G! You are though encouraged to try the assignments
from part II: they count to pass the exam, and you may get a higher grade.

e For a 4 you need to pass Part I (five out of seven assignments) and one assign-
ment of your choice from Part II.

e For a 5 you need to pass Part I (five out of seven assignments) and both assign-
ments from Part II.

Notes
— Begin each assignment on a new sheet and write your number on it.
- You may write your answers in Swedish and English.
— Excessively complicated answers might be rejected.
— Write legibly! Solutions that are difficult to read are marked as incorrect!

— You can make use of the standard Haskell functions and types given in the attached
list (you have to implement other functions yourself if you want to use them). You
do not have to import standard modules in your solutions. You do not have to
copy any of the code provided.

— Good luck!



Part1l

1

Given the following definitions:

add (a, b, c) =a +b + ¢

combine (x:y:z:zs) = (x, y, z) : combine (y:z:zs)
combine _ ]

a) What does the expression map add (combine [3,2,1,-3,5]) evaluate to? Write
down the intermediate steps of your computation. If the type of your answer is
incorrect then your solution will be considered incorrect.

b) What are the types (type signatures) of add and combine?

2

In this assignment you are going to define an own implementation of the square root
function. You need to implement a function approxSqrt that can approximate /x for any
value x.

Consider the following two facts about the square root:

e . . +5 . . .
1. if y is a good approximation of 1/x then ! >~ is a better approximation,

2. the value 1 is an approximation of v/x (but not so good).

We will say that the approximation of /x is good enough when 3 is close to x. More
precisely, when |y? — x| is at most some given threshold.

a) Use the above two facts to implement a function:
approxSqrt :: Double -> Double -> Double
using guards such that approxSqrt eps x returns a value that is a good enough
with respect to the given threshold eps. For example:
ghci> approxSqrt 0.001 5
2.2360688956433634
Hint: use a recursive helper function.

b) Maybe we don’t know in advance yet when the approximation is good enough,
and instead we just want a list of ever more precise approximations of /x. Write a
function:

approxSqrts :: Double -> [Double]

that produces such a list.



3

Consider the Prelude function iterate:

iterate :: (a —> a) —> a -> [a]
iterate f x = let y = £ x in y : iterate f y

which applies a function f repeatedly starting with the initial value x and returning the
results of each application in an infinite list. For example:

ghci> take 10 (iterate (x 2) 1)
[1,2,4,8,16,32,64,128,256,512]

We want to create some useful variations on this function.

a)

Write a function:

iterateN n f x = ...
that applies the function f a given number (n) of times, starting with the value x. For
example:

ghci> iterateN 3 (*2) 1
8

You must define the iterateN function using explicit recursion (on n) and may not
use the original iterate function.
Implement a function:
iterateWhile p £ x = ...
that applies the given function f repeatedly while the predicate p (a function return-

ing a boolean value) still holds. The iteration of function applications starts on the
value x. For example:

> iterateWhile (< 100) (* 2) 1
128

Again, you are not allowed to use the original iterate function.

c) Give the types (type signatures) for iterateN and iterateWhile.



4

Consider the following data type definition that models an electronic billboard:

type Pixel = (Int, Int)

data BillBoard = BB { size :: (Int, Int), actives :: [Pixel] }

A billboard, which can be regarded as a matrix of pixels, consists of its size and a list of
active pixels. The size field of a billboard is a tuple of integers where the first element is
the number of rows, and the second element the number of columns. A pixel is a pair of
integers which denotes its place (row and column) on the billboard. For example, (0, 3)
is found on the first row and fourth column. We use zero-based indexing, that is, index
(0, 0) points to the pixel on the first row and first column.

Using the above data definition we can make an example billboard:

lambda :: BillBoard
lambda = BB (4, 10) [(3,1),(2,2),(1,3),(0,4),(0,5),(2,4),(3,5),(4,6)]

Your task is to write a Show instance for the BillBoard data type, such that the billboard is
displayed as a matrix of pixels. For example:

ghci> putStr (show lambda)
COLHEL L

An active pixel is represented by the character '#' and non-active pixelsby adot '.".

Hint: use a nested list comprehension and define a help function for converting a pixel to
a character.



5

Recall the BillBoard data type from the previous assignment:

type Pixel = (Int, Int)

data BillBoard = BB { size :: (Int, Int), actives :: [Pixel] }

We want to let a user to create a billboard of a specific size. You are going to define a
function that first asks a user for the number of rows and number of columns. The function
then creates an empty billboard (i.e., no active pixels) of the specified size, prints the empty
billboard, and finally returns the newly created billboard.

Write the function above with the following type signature:

createBillBoard :: IO BillBoard

The following excerpt shows an example interaction:

ghci> bb <- createBillBoard
Number of rows?

> 2

Number of columns?

> 4

Created the following billboard:

You may assume a correct Show instance for the data type BillBoard, even if you have not
implemented it. You can do this assignment independent from the other assignments.

6

The function filter from the Prelude takes a predicate and list as arguments and filters
all elements from the list for which the predicate does not hold. In other words, the filter
function returns the elements from an input list for which a given predicate holds. For
example:

ghci> filter even [1..10]

[2,4,6,8,10]
Your task is to test the implementation of the filter function using QuickCheck for a
given predicate (i.e., the properties will take a predicate as argument):

1. Write a property that checks that the result list cannot be longer than the input list.

2. Write a property that verifies that all elements in the result list satisfy the given
predicate.



7

A URI (Uniform Resource Identifier) can be used to identify a particular, often electronic,
resource. A URI consists of the following parts:

e a scheme, which can be one of the following: http, https, ldap, mailto, ftp or news,
e an authority, which in turn consists of the following components:
- an optional user name,
— a host name,
- an optional port number,
e an optional path, which is a sequence of segments, where a segment is a string,
e an optional query, which is a collection of key-value pairs,
e and finally, an optional fragment, which is a string.
All non-optional parts are mandatory and need to be specified when constructing a URI.

The next figure shows a number of example URIs:

userinfo host port
I l

T 1T 1
https://john.doe@www.example.com:12?{forum/questions{?Tag=networking&order=newes$#top
|

T T
scheme authority path query fragment

1dap://{2001:db8::7}/c=GB??bjectC1ass?on?

T T
scheme authority path query

Tailt?:?ohn.Doe@example.coT

T T
scheme path

news:comp.infosystems.www.servers.unix
1 |

T
scheme path

Figure 1: Example URIs (source: Wikipedia)

Your task is to define a collection of data types (and/or type synonyms) that models a URI
and all its components as precisely as possible.



Part 11

8

We have a radio-controlled car that accepts four different commands: forward, backward,
turn left, and turn right. When the car turns left or right, it always turns exactly 90 degrees.
Your assignment is to write a computer simulator for the car’s movement.

We can model the four commands as a data type:

data Command
= Forward Int
| Backward Int
| TurnLeft
| TurnRight

The integer argument to Forward and Backward denotes the distance the car should drive
in the current direction.
Implement a function:
destination :: [Command] -> (Int, Int)
that, given a list of commands, computes the position of the car after following these

commands. The original position of the caris (x, y) == (0,0), and itis facing "upwards”
in the sense that going forward from the start position will increase its y position.

For example:

ghci> destination [Forward 20, Backward 10, TurnRight, Forward 100]
(100,10)

ghci> destination [Forward 20, Backward 5, TurnLeft, Forward 100]
(-100,15)

9

Consider the following data types that model a small expression language with integer
and boolean literals, addition, and multiplication. In addition, the expression language
also supports a comparison operator (greater than) and an ‘if-then-else” expression, which
takes a condition (which is also an expression) and two subexpressions that model the
‘then” and “else” branch respectively.

data Expr
= Lit Literal -- Literal, etther integer or boolean
| Add Expr Expr -- Addition
| Mul Expr Expr -— Multiplication
| Gth Expr Expr —-- Comparison operator
| If Expr Expr Expr -- t¢f-then-else



data Literal
= N Int -— Integer literal
| B Bool -- Boolean literal

Using these data types we can define some example expressions:

-- Smart constructor for integers
num :: Int -> Expr
num = Lit . N

-- Smart constructor for booleans
bool :: Bool —-> Expr
bool = Lit . B

-- Ezample expressions

el, e2 :: Expr

el = (num 4 “Add”™ num 5) “Mul® num 2 -— (4 +5) 2

e2 = If (el “Gth™ (num 4)) (num 3) (num 4 “Add” num 1) -— if el > 4 then 3 else 4 + 1

The above examples are well-formed, which means that they don’t contain any type errors
and we can evaluate these expressions and get a proper result. The expression language
model also allows for ill-formed expressions, for example:

e3_bad, e4_bad, eb5_bad, e6_bad :: Expr

e3_bad = num 42 “Add" bool False -= 42 + False

e4d_bad = If e2 (num 3) (num 4) -- if e2 then 3 else 4

e5_bad = If (num 4 “Gth™ num 2) (num 3) (bool True) -— if 4 > 2 then 3 else True
e6_bad = If (bool False) (num 42) (num 3 “Mul® bool True) -- <f False then 42 else 3 * True

These expressions contain so-called type errors. For example, expression e3_bad adds an
integer to a boolean value; in e4_bad the condition is of integer type where it should be a
boolean; e5_bad has different types in the then and else branches; and finally in e6_bad
we multiply an integer with a boolean (3 * True).

Your task is to write a type check function with the following type:

typecheck :: Expr -> Bool

This function checks if the expression is type correct. If the given expression contains a
type error it will return False otherwise it will return True.



,SX STTe3} <- ,SX : (d pus) (d 3s3) 3 = d 3 Axanoun ———— ————
[1 <= [1] (@ <- (q ‘®)) <- (@ <- q <- ®©) :: Kxanoun (1x 3) uaniax
JO SX @sed : SX = SX STTe3 Tw -> IX Op = TWw J WIITT
[[el]l <- [e] :: sTTR} (K ’'x) 3 = A x 3 Kxano quw<-®ew<- (q<- ®) <= W PRUON :: WIFTT
2 <-q<-®<- (0<- (q ‘e)) :: Axano
,SX 4+ SX = ,SX @I9Yym ,SX = sx 9T0ko () uanzax
2ISTT L3dws :a970&0-opnya2ad, I0II® = []1 o104o (e’q) = (q’e) dems sx oousanbss op = sx ~oouanbes
[e] <- [e] :: 91040 (e’q) <- (q’e) :: dems () w <- [e w] <= w peuow :: “oousnbes
K = (K’x) pus (sx:x) uiniyax
(x jeadax) u aye3x = X u o3eorTdax q <- (q‘e) :: pus b -> sx
[e] <- © <- juIl :: o3edTTdax X = (K'x) 23s3 d -> x op = b d suoow axsaym
e <- (q‘e) :: 1s3 ([]1 urnyex) suoow IPTOF = 2ouanbas
SX:X = SX 9I9YM SX = X 3eadax sxTed uo suoT3loUNd x —— [e] w <- [e w] <= w peuon :: aouanbas
[e] <- & :: qesdsx | 0 ——————— —-—— suoT3ouUny OTPPUOW x —-—
[sT -> x 3snp | x] = ST soagiep3zeo —— ——
(x J) 3 @3@393T ¢ X = X J 93ex93T [e] <- [e aqien] :: sagienieo
[e] <—- & <= (e <- ®) :: o3eI193T usA® °* 30U = ppo
e 3snp = (T:e) aqhkewWoIalsSTT 0 == ¢ ,WdI, U = u uaas
sx (x z 3) ¥ TPIoF = (sx:X) z 3 TpIoF butyjzon = [1 sqAewor3sTt Toog <- ® <= & Teabajur :: ppo ‘uans
z = [1 2z 3 TPTOZ e aqlen <- [e] :: 9qAeHOLISTT
e <- [q] <- e <- (e <- q <- ®©) :: IpPTIOF suoT3ouUny T[POTISUNN x ——
[e] = (e 3snp) 3stIOLOqARW —-—— —-——
(sx z 3 IpT03) X 3 = (sx:X) z I IpTOF [1 = butyzoN 3IsTTOLSqARU
z = [1 z 3 apTo7F [e] <- e aqhenw :: 3sTToLoqkeur q <- e <= (q Teabsjur) :: I00TJF ‘BurTTe®
q <- [e] <- q <- (9@ <- q <-®) :: IpToJ q <- e <= (q Teabajzur) :: punox ‘a3eouniy
e = (e 3snp) 3snpwoxd 2a9yMm © deIgTedy <= (e JeuoT3idoeId ‘e Teay) Ssseld
(T-u) ii sx = u (sx:7) e <- e aqhken :: 3SNLWOIF
X = [ (T:x) e <—- e :: ueyl ‘soo ‘uts
e <- jur <- [e] :: (i) IsnpsT * jou = BUTY3ONST e <-® :: 11bs ‘bo1 ‘dxa
ox9ym © buTleoTd <= (e TeuoTioeii) Sseld
0 ((+1) 3suod) ap1oF = yabuat osTed = PuTy3loON 3ISnLsT
jur <- [e] :: yabua oni1L = (e 3snp) asnpst e <- TeuoTriey :: TeuoT3eyuory
Toog <- ® aqlen :: BPUuTY3zONST‘/3snpesT e <-®B<-® (/)
osTed = (T:7) Trnu 2I9YM ® TRUOT3IORIJ <= © WNN SSerd
aniL = [1 TInu e 3snp | BUTY3oN = © 9qheW ezep
To0dg <- [e] :: TTnu oqfely uo suor3zoung x —-— asboajur <- e :: Iabajurol
||||||| - e <- B <-©e :: pou ‘ATp
SX 3TUT : X = (sx:x) 3TUT oniL = osTed 3ou e <- e <-®€ 3 uex ‘3onb
[1 = [x] aTut osTed = aniy 3ou axaym © Texbejul <= (e wnug ‘e Teay) sserd
Toog <- Tood :: J0u
SX = (sx:7) TTeE2 TeuoT3iey <- © 3 TeuoT3eyoly
[e] <- [e] :: 3TUT ‘TTE3} X = x || esTea 2I9yMm © Tedy <= (e piIp ‘e wnN) sserd
oniy = || emnax
SX 3SeT = (sx:7) 3ser asTed = ~ 3% osTed e <- xsbajur :: IobojuIwWoOIF
X = [x] aset X = X ®BR 9nig e <-® :: unubts ‘sqe
To0dg <- Tood <- Toog :: (] ]) *(s%3) e <- e :: 23ebau
X = (T:x) pesy B <-®B<-® (%) (=) “(+)
e <- [e] : ]seT ‘pesy eniy | esTed = Toog ejep a2a9ym e wnN <= (e moys ‘e bzg) ssero
SToOg UO SUOT3OoUNJ x —-—
3 dew °* 3edouod = J depyjeduod | 0 —mm—————m —— e <- e <-®B 12 utw ‘xeu
[q] <- [e] <- ([q] <- ®) :: dewjeouod X 3 = X $3 Toodg <- B <- B :: (<) ‘(=<) ‘(=>) ‘(>)
q<-%e <- (q <-®e) :: (3) 2a9ym e pI0 <= © by ssero
ssx [] (++) IPTOF = SSX 3eDUOD
[e]l] <- [[e]l] :: 3eouod x K 3 = K x 3 dI13 100d <- ® <- ® :: (=/) ‘(==
D <-e<-q<- (0D<-q<-®) :: driz ax9ym © by sseo
[ xd‘sx =>x | x ] =sxd 193713
[e] <- [e] <- (1oog <- ®) :: I93TTJ (x B) 3 <- x \ = b - 3 e <- Bbutails :: peal oI9YM © peay SSETD
D <-e<- (q<-e) <- (0 <-q) :: (*)
sx sk (:) IPTOF = SK ++ sx BUTIIS <- © :: MOUS oI9YM © MOYS SSefd
[e]l <- [e] <= [e] :: (++) X = ~ x 3suod
e <-q<-e :: 3sUuo0d sasseTo odf3 paepuels x —-—
[ sx -=> x | x 3 ] = sx 3 deu _—— _——
[q] <- [e] <- (q <- ®) :: deuw X = X PT {- peUON * TOI3UO0D IRYD* ®IRd 9qAPH°B3Rd
e <- e :: PT 1STT e3eg SpPNTaId :Sa[npouw [IOXSeH pIepuels
S3STT UO suoT3duUng x —--— suoT30UNI UO SUOTIOUNT x —— oy3 WOIJ SUOT3IOUNI pPo3dadT[osS JO 3ISTT © ST STYL -}




() oI <- Butx3ls <- YjedalTd :: STTI9ITIM
buTti3ls OI <- Y3eda[Td :: oTTdpesa1
buTti3ls = yjegerTa odi3

buta3ls OI :: QuTTIob

() 01 <- bButazs :: uta3zsand ‘x3sind
uorzouny QI [nFasn x —-

-1o30wered 9zTS ay3z --

uo puadep 3PYy3 SIO03PIOUSH 3ONIFSUOD —--—
e U9 <- (e udn <- 3JUI) :: PIZTS

‘y3busT usATH 9Yy3z JO 3ISTT ° SO3PIBUSH —--—
[e] uep <- ® uaH <- 3ur :: JOI03D9A

*y3busT wopuer Jo 3STT © S93LISUS8H —-—
[e] usp <- © uay :: JOISTT

*senTeA USATH 8y3 JO SUO S93PISUSH —-—
e u9p <- [e] :: sjuswetle

*UOTINQTIISTP Wopuel pajiybrom --
y3TM sTO3eI9USb JO ISTT WOIF S9S00YD —-
e udn <- [(e usen ‘3ur)] :: Aousnbsiazg

szoj3eIT9UL®b USATH ©9Yy3z JO 9UO sasn ATuwopuery --
e uap <- [e usp] :: josuo

*9bupI 9ATSNTOUT —--
UsATH 9Yy3 UT JUSWOTS WOPURI B S93BIdUIH —-
e usn <- (e ‘e) <= e wWopuey :: SSOOYD

soaydyoTnb Aq pesn ‘A1e13TqIV SSeTo UT —-
ad4A3 p jJo sanTepa I0F IJO03PI9USH BY3 —-
e udd <= e KAaea3zrqay :: ArerlzTqae

308yDyoTNd *3S9L WOIF SUOTIDUNF TNFOSN x —-—
Jeyp <- 3JUI :: IYO
3uI <- Ieyd :: pIo

/€, == £ 3ITPT@OIIUT --
aeyd <- 3JuI :: 3THTQOIUT

8 == ,8, IUIOIITLIP --
UL <- JeYd :: JUIOLITHTP

.2, == ,Z, I2MOTO3 —--—
,¥, == ,e, xaddpoz --
Ieyd <- aeyp :: rxamool ‘xaddnol

[xeyp] = bButaazs adi3
IPYD UO SUOT3OUNG x —-—

SX X 3I9SuT:k 9STo sx:4A:x uaylx £ => X JT
= (sx:4X) x 3jxasut

[x] = []1 x axesutr
[e] <- [e] <- e <= (e pa0o) :: jIosuTt
[] 3xssutr apTo3I = 3I0S

[e] <- [e] <= (e pao) :: 3108

K osieaax ,JOXTIOIJST,
X 9sJ9Ad9I = A X JOXTIINSST
HoomAu_m_Au_m_Aumwm""woxﬂwmzmmﬂ

SA SX JOXTJFOIdST 3%

A == = (sh:K) (sx:xX) JOXTIOIdsT
asTed = [1 T JOXTJIOIdST
oniL = - []1 FoxXTF®adstT
1008 <- [e] <- [e] <= ® baE :: JOXTIOIAST

sx (x ba) ueds = (sz’sk) aasaym
sz bo Agdnoib : (sh:x) = (sx:x) bs Agdnoib
[1 = [1 ~— Agdnoab
[[e]l] <- [e] <- (1o0g <- ® <- ®) :: Agdnoib

(==) Agdnoab = dnoab
: dnoxb

[[e]l] <- [e] <= e ba

(sx (d * 3o0u) x037TI ‘sx d 19371T3)
= sx d uotat3xed

([e]l’[e]) <- [e] <- (Toog <- ®) :: uot3T3aed

[[9’cl’l[g’z]*[p’T]] == -

[[9'6“3]1“[c’z“1]] @sodsuezz --

[[e]l]l <- [[e]l] :: osodsuera

[770’€’0’2’0°1] == [p’c’Z’T] 0 @siadszazur --

[e]l] <- [e] <- & :: osxadsiajut

[ sk ,waT®, X ’‘sx -> X _ x ] = s£& sx j309siejut

[e] <- [e] <- [e] <= e bz :: 3j09sI93UT

(sx \\ S&) ++ sx = sk sx uoTtun

[e] <- [e] <- [e] <= e bg :: uoTun

(e3a19p dr13) TPIOF = (\)

[e] <- [e] <- [e] <= e bg :: (\\)
sx A 939T9p : X 9STd® sx uaylx £ == X 3T

= (sx:x) K s3s1ep

[1= [1 X a39T0p

[e] <- [e] <- e <= e bx :: 939T9p

[ £ =/ x 'sx -=> K | £ ] qnu : x
= (sx:x) qnu

[1= [1 qnu
[e] <- [e] <= e ba :: qnu
([1°01) ((sq:q’se:e) <- (sq‘se)_ (q’‘e)\) IPTOF
= drzun
([ql‘[e]) <- [(q’e)] :: drzun
(1 = T 7 7 yatmdrz

sq se z yatmdriz : g e z =
(sq:q) (se:e) z yarmdrz

[2]1<-[ql<-[e] <- (P<-q<-®) y3atmdrz
(*) yatmdrz = drz

[(q’e)] <- [q] <- [e] :: drz

SX X UTW TPTOF = (SX:X) wnwruTtw

LISTT £3dws :umwrutw-apnioid, IOIID = [] wnuwtuTw
SX X Xew TPT0F = (SX:X) wnwrxeu

.ISTT £3dwe :wnuwrixew-spnyaad, I0II8 = [] unwrxeu

e <- [e] <= (e pap) :: WNWTUTW ‘wWnUTXEW

T (%) TPTOF = 3onpoad
0 (+) TPTOF = uns
e <- [e] <= (e unN) :: 3onpoad ‘wns
sAx Koy dnjyool = oSTMISYIO |
K 3snp = == Koy |
(shx: (K’x)) Koy dnyooT
BbutyazoN = []1 Koy dnyooT
q oqhen <- [(q‘e)] <- ® <= (e ba) :: dnyooT
(x =/) TI® = X weTd3lou
(x ==) Aue = X WaT®
10049 <- [e] <- & <= (e b3E) :: waTH3IOoU ‘waTd
d dew ° pue = d 1T1e
d dew * 10 = d KAue
100d <- [e] <- (1oog <- ®) :: 1TR ‘KAue
esTed (||) aploz = Io
oniy (%%) IPTOF = pue
1009 <- [1o0g] :: I0 ‘pue
[1 ((:) dTr13) TPTIOF = 9sI9A9I
[e] <- [e] :: osI9A9X

,ededo evdoaq ede, == -
[,edeo, ’, edaq, ’, ede, ] spromun --

. u\edeou\edoqu\ede, == -
[,edso, ’, edaq, ’, ede, ] ssurTun --
butaizs <- [Puraizs] :: spaomun ‘sautTun

[,edeo,’, edoq, ’ ede, ] == --
,edeo u\edeq ede, spiom --

[,edeo,’, edeq,’ ede,] == --
,u\edeou\edequ\ede, soUTT --

[Buta3s] <- Butazs :: spiom ‘sautl
(se d aTtymdoap ‘se d oTTymadel) = se d ueds
([e]l “[e]l) <- [e] <- (Toog <- e) :: ueds

SX = 9STMIay3O |

,sx d artymdoap = x d |

(,sx:x)psx d arTymdoap
[1 = [1 d srtymdoap

[1 = sstmisyjzo |

sx d STTyMaye3 : X = x d |
(sx:x) d arTyMael
[1 = [1 d srTyumael
[e] <- [e] <- (1o0g <- ®) :: oTTymdoap ‘STTymae3

(sx u doap ‘sx u oye3l) = sx u 3y3TTds
([el’[e]) <- [e] <- 3juI :: 3v3T1ds

sx (1-u) doap = (sx:7) u doap

[1 = [1 ™ doap

SX =0 => u | sx u doap

sx (T-u) o3e3 : x = (sx:x) u ayea
1 = [1 7 oyea
1] =0 =>u| T u aye3
doxp ‘o3e3

[
[

[e] <- [e] <- 3juIr




	
	
	
	
	
	
	
	
	

